Skip to main content

Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy

Abstract

Pharmacoresistance in epilepsy is a major challenge to successful clinical therapy. Glucocorticoid receptor (GR) dysregulation can affect the underlying disease pathogenesis. We recently reported that local drug biotransformation at the blood-brain barrier is upregulated by GR, which controls drug-metabolizing enzymes (e.g., cytochrome P450s, CYPs) and efflux drug transporters (MDR1) in human epileptic brain endothelial cells (EPI-ECs). Here, we establish that this mechanism is influenced upstream by GR and its association with heat shock proteins/co-chaperones (Hsps) during maturation, which differentially affect human epileptic (EPI) tissue and brain endothelial cells. Overexpressed GR, Hsp90, Hsp70, and Hsp40 were found in EPI vs. NON-EPI brain regions. Elevated neurovascular GR expression and co-localization with Hsps was evident in the EPI regions with cortical dysplasia, predominantly in the brain micro-capillaries and neurons. A corresponding increase in ATPase activity (*p < 0.05) was found in the EPI regions. The GR-Hsp90/Hsp70 binding patterns indicated a faster chaperone-promoted maturation of GR, leading to its overactivation in both the tissue and EPI-ECs derived from EPI/focal regions and GR silencing in EPI-ECs slowed such GR-Hsp interactions. Significantly accelerated GR nuclear translocation was determined in EPI-ECs following treatment with GR modulators/ligands dexamethasone, rifampicin, or phenytoin. Our findings reveal that overexpressed GR co-localizes with Hsps in the neurovasculature of EPI brain, increased GR maturation by Hsps accelerates EPI GR machinery, and furthermore this change in EPI and NON-EPI GR-Hsp interaction alters with the age of seizure onset in epileptic patients, together affecting the pathophysiology and drug regulation in the epileptic brain endothelium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Desmet SJ, De Bosscher K (2017) Glucocorticoid receptors: finding the middle ground. J Clin Invest 127(4):1136–1145. https://doi.org/10.1172/JCI88886

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Jenkins BD, Pullen CB, Darimont BD (2001) Novel glucocorticoid receptor coactivator effector mechanisms. Trends Endocrinol Metab 12(3):122–126

    CAS  Article  Google Scholar 

  3. 3.

    Kadmiel M, Cidlowski JA (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34(9):518–530. https://doi.org/10.1016/j.tips.2013.07.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Williams S, Ghosh C (2019) Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 25:89–106. https://doi.org/10.1016/j.drudis.2019.09.009

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Granata T, Marchi N, Carlton E, Ghosh C, Gonzalez-Martinez J, Alexopoulos AV, Janigro D (2009) Management of the patient with medically refractory epilepsy. Expert Rev Neurother 9(12):1791–1802

    Article  Google Scholar 

  6. 6.

    Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365(10):919–926. https://doi.org/10.1056/NEJMra1004418

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ghosh C, Hossain M, Solanki J, Najm IM, Marchi N, Janigro D (2017) Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia 58(4):576–585. https://doi.org/10.1111/epi.13703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ghosh C, Hossain M, Mishra S, Khan S, Gonzalez-Martinez J, Marchi N, Janigro D, Bingaman W et al (2018) Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an in vitro blood-brain barrier model. Epilepsia 59(11):2049–2060. https://doi.org/10.1111/epi.14567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K (2013) How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 380(1–2):41–54. https://doi.org/10.1016/j.mce.2012.12.014

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Furay AR, Murphy EK, Mattson MP, Guo Z, Herman JP (2006) Region-specific regulation of glucocorticoid receptor/HSP90 expression and interaction in brain. J Neurochem 98(4):1176–1184. https://doi.org/10.1111/j.1471-4159.2006.03953.x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Garabedian MJ, Harris CA, Jeanneteau F (2017) Glucocorticoid receptor action in metabolic and neuronal function. F1000Res 6:1208. https://doi.org/10.12688/f1000research.11375.1

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Saaltink DJ, Vreugdenhil E (2014) Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci 71(13):2499–2515. https://doi.org/10.1007/s00018-014-1568-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kandratavicius L, Hallak JE, Carlotti CG Jr, Assirati JA Jr, Leite JP (2014) Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 55(11):1834–1843. https://doi.org/10.1111/epi.12787

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lesuis SL, Weggen S, Baches S, Lucassen PJ, Krugers HJ (2018) Targeting glucocorticoid receptors prevents the effects of early life stress on amyloid pathology and cognitive performance in APP/PS1 mice. Transl Psychiatry 8(1):53. https://doi.org/10.1038/s41398-018-0101-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D (2016) Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 21:1609–1619. https://doi.org/10.1016/j.drudis.2016.06.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ghosh C, Marchi N, Desai NK, Puvenna V, Hossain M, Gonzalez-Martinez J, Alexopoulos AV et al (2011) Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia 52(3):562–571

    CAS  Article  Google Scholar 

  17. 17.

    Ghosh C, Marchi N, Hossain M, Rasmussen P, Alexopoulos AV, Gonzalez-Martinez J, Yang H, Janigro D (2012) A pro-convulsive carbamazepine metabolite: quinolinic acid in drug resistant epileptic human brain. Neurobiol Dis 46(3):692–700. https://doi.org/10.1016/j.nbd.2012.03.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hue CD, Cho FS, Cao S, Dale Bass CR, Meaney DF, Morrison B 3rd (2015) Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab 35(7):1191–1198. https://doi.org/10.1038/jcbfm.2015.38

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Salvador E, Shityakov S, Forster C (2014) Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 355(3):597–605. https://doi.org/10.1007/s00441-013-1762-z

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42(12):1501–1506

    CAS  PubMed  Google Scholar 

  21. 21.

    Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, Marchi N (2010) Pattern of P450 expression at the human blood-brain barrier: roles of epileptic condition and laminar flow. Epilepsia 51(8):1408–1417. https://doi.org/10.1111/j.1528-1167.2009.02428.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D (2007) Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48(3):505–516. https://doi.org/10.1111/j.1528-1167.2006.00960.x

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Golemis EA, Tew KD, Dadke D (2002) Protein interaction-targeted drug discovery: evaluating critical issues. Biotechniques 32(3):636–638, 640, 642 passim. https://doi.org/10.2144/02323dd01

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N et al (1998) The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1(7):959–968

    CAS  PubMed  Google Scholar 

  25. 25.

    Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA (2014) Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157(7):1685–1697. https://doi.org/10.1016/j.cell.2014.04.038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Williams S, Hossain M, Ferguson L, Busch RM, Marchi N, Gonzalez-Martinez J, Perucca E et al (2019) Neurovascular drug biotransformation machinery in focal human epilepsies: brain CYP3A4 correlates with seizure frequency and antiepileptic drug therapy. Mol Neurobiol 56:8392–8407. https://doi.org/10.1007/s12035-019-01673-y

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Alms D, Fedrowitz M, Romermann K, Noack A, Loscher W (2014) Marked differences in the effect of antiepileptic and cytostatic drugs on the functionality of P-glycoprotein in human and rat brain capillary endothelial cell lines. Pharm Res 31(6):1588–1604. https://doi.org/10.1007/s11095-013-1264-4

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ott M, Fricker G, Bauer B (2009) Pregnane X receptor (PXR) regulates P-glycoprotein at the blood-brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther 329(1):141–149. https://doi.org/10.1124/jpet.108.149690

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Pascussi JM, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, Pineau T, Saric J et al (2005) Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest 115(1):177–186. https://doi.org/10.1172/JCI21867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Schneider N, Goncalves Fda C, Pinto FO, Lopez PL, Araujo AB, Pfaffenseller B, Passos EP, Cirne-Lima EO et al (2015) Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior. PLoS One 10(3):e0120538. https://doi.org/10.1371/journal.pone.0120538

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Williams S, Hossain M, Mishra S, Gonzalez-Martinez J, Najm I, Ghosh C (2018) Expression and functional relevance of death-associated protein kinase in human drug-resistant epileptic brain: focusing on the neurovascular interface. Mol Neurobiol 56:4904–4915. https://doi.org/10.1007/s12035-018-1415-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410. https://doi.org/10.1038/nature01913

    CAS  Article  Google Scholar 

  33. 33.

    Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168. https://doi.org/10.1006/abio.1997.2391

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Marchi N, Betto G, Fazio V, Fan Q, Ghosh C, Machado A, Janigro D (2009) Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia 50(4):664–677. https://doi.org/10.1111/j.1528-1167.2008.01989.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275(1–2):2–12. https://doi.org/10.1016/j.mce.2007.05.018

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26(22):8385–8395. https://doi.org/10.1128/MCB.02188-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ghosh A, Chawla-Sarkar M, Stuehr DJ (2011) Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 25(6):2049–2060. https://doi.org/10.1096/fj.10-180554

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ghosh A, Dai Y, Biswas P, Stuehr DJ (2019) Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase. FASEB J:fj201802793RR. https://doi.org/10.1096/fj.201802793RR

  39. 39.

    Russo-Abrahao T, Lacerda-Abreu MA, Gomes T, Cosentino-Gomes D, Carvalho-de-Araujo AD, Rodrigues MF, Oliveira ACL et al (2018) Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231. PLoS One 13(2):e0191270. https://doi.org/10.1371/journal.pone.0191270

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kim YJ, Kim JY, Ko AR, Kang TC (2013) Reduction in heat shock protein 90 correlates to neuronal vulnerability in the rat piriform cortex following status epilepticus. Neuroscience 255:265–277. https://doi.org/10.1016/j.neuroscience.2013.09.050

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lively S, Brown IR (2008) Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 107(5):1335–1346. https://doi.org/10.1111/j.1471-4159.2008.05696.x

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kharlamov EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili Z (2011) Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95(1–2):20–34. https://doi.org/10.1016/j.eplepsyres.2011.02.008

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY et al (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44(4):584–591. https://doi.org/10.1002/ana.410440403

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Pratt WB (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268(29):21455–21458

    CAS  PubMed  Google Scholar 

  45. 45.

    Ghosh A, Stuehr DJ (2012) Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme. Proc Natl Acad Sci U S A 109(32):12998–13003. https://doi.org/10.1073/pnas.1205854109

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ (2013) Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 34(6):1662–1673. https://doi.org/10.1016/j.neurobiolaging.2012.11.019

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D (2015) Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 56(3):439–449

    CAS  Article  Google Scholar 

  48. 48.

    Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, Xu Q (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214(2):547–563. https://doi.org/10.1084/jem.20160667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772. https://doi.org/10.1038/nrc1716

    CAS  Article  Google Scholar 

  50. 50.

    Lewis-Tuffin LJ, Cidlowski JA (2006) The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci 1069:1–9. https://doi.org/10.1196/annals.1351.001

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Institute of Neurological Disorders and Stroke/National Institutes of Health grants R01NS095825 and R01NS078307 (to CG) and the National Heart, Lung, and Blood Institute/National Institutes of Health grant R56HL139564 (to AG). We are thankful for the support of the Cleveland Clinic Center of Research Excellence in Epilepsy and Comorbidities grant award and Lerner Research Institute Recognition award 2019.

Author information

Affiliations

Authors

Contributions

C.G. designed the experiments and wrote the manuscript. M.H. and S.W. performed the experiments. M.H. performed the cell culture experiments, biochemical studies, western blot, and immunoprecipitation. S.W. performed the immunohistochemistry and immunocytochemistry analyses and quantification. C.G., S.W., M.H., W.B., A.G., and I.N. analyzed the data. L.F., I.N., and W.B. helped in tissue procurement. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Chaitali Ghosh.

Ethics declarations

Conflict of Interest

I.N. serves on the speakers bureau and as a member of ad hoc advisory board for Eisai, Inc. None of the other authors have any potential conflict of interest to disclose. We confirm that we have read the journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Table 1

List of antibodies used for immunohistochemistry; immunocytochemistry and western blot (PDF 193 kb)

Supplemental Fig. 1

General experimental outline and approaches used to study Hsp-facilitated GR regulatory process in epileptic brain tissue and endothelial cells. This includes evaluation of GR-Hsp expression, GR maturation, drug regulation, and downstream CYP-MDR expression and function in epileptic (EPI) vs non-epileptic (NON-EPI) brain tissue and respective endothelial cells isolated from both brain regions. GR silencing in EPI-ECs and subsequent effect on GR-Hsp interactions has also been studied. See main text for details. (JPG 136 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M., Williams, S., Ferguson, L. et al. Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy. Mol Neurobiol 57, 4511–4529 (2020). https://doi.org/10.1007/s12035-020-02043-9

Download citation

Keywords

  • Glucocorticoid receptor
  • Heat shock proteins
  • Drug resistance
  • Blood-brain barrier
  • Nuclear translocation