Skip to main content
Log in

Differential Effect of Repeated Lipopolysaccharide Treatment and Aging on Hippocampal Function and Biomarkers of Hippocampal Senescence

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Markers of brain aging and cognitive decline are thought to be influenced by peripheral inflammation. This study compared the effects of repeated lipopolysaccharide (LPS) treatment in young rats to age-related changes in hippocampal-dependent cognition and transcription. Young Fischer 344 X Brown Norway hybrid rats were given intraperitoneal injections once a week for 7 weeks with either LPS or vehicle. Older rats received a similar injection schedule of vehicle. Old vehicle and young LPS rats exhibited a delay-dependent impairment in spatial memory. Further, LPS treatment reduced the hippocampal CA3–CA1 synaptic response. RNA sequencing, performed on CA1, indicated an increase in genes linked to neuroinflammation in old vehicle and young LPS animals. In contrast to an age-related decrease in transcription of synaptic genes, young LPS animals exhibited increased expression of genes that support the growth and maintenance of synapses. We suggest that the increased expression of genes for growth and maintenance of synapses in young animals represents neuronal resilience/recovery in response to acute systemic inflammation. Thus, the results indicate that repeated LPS treatment does not completely recapitulate the aging phenotype for synaptic function, possibly due to the chronic nature of systemic inflammation in aging and resilience of young animals to acute treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ventura MT, Casciaro M, Gangemi S, Buquicchio R (2017) Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy 15:21. https://doi.org/10.1186/s12948-017-0077-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mariani E, Cattini L, Neri S, Malavolta M, Mocchegiani E, Ravaglia G, Facchini A (2006) Simultaneous evaluation of circulating chemokine and cytokine profiles in elderly subjects by multiplex technology: relationship with zinc status. Biogerontology 7(5–6):449–459. https://doi.org/10.1007/s10522-006-9060-8

    Article  CAS  PubMed  Google Scholar 

  3. Wei J, Xu H, Davies JL, Hemmings GP (1992) Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 51(25):1953–1956. https://doi.org/10.1016/0024-3205(92)90112-3

    Article  CAS  PubMed  Google Scholar 

  4. Walker KA, Gottesman RF, Wu A, Knopman DS, Gross AL, Mosley TH Jr, Selvin E, Windham BG (2019) Systemic inflammation during midlife and cognitive change over 20 years: the ARIC study. Neurology 92(11):e1256–e1267. https://doi.org/10.1212/WNL.0000000000007094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beydoun MA, Dore GA, Canas JA, Liang H, Beydoun HA, Evans MK, Zonderman AB (2018) Systemic inflammation is associated with longitudinal changes in cognitive performance among urban adults. Front Aging Neurosci 10:313. https://doi.org/10.3389/fnagi.2018.00313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. https://doi.org/10.1186/s40478-014-0142-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99. https://doi.org/10.1016/j.neuroscience.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  8. Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36(2):221–229

    Article  CAS  PubMed  Google Scholar 

  9. Kumar A, Yegla B, Foster TC (2018) Redox signaling in neurotransmission and cognition during aging. Antioxid Redox Signal 28(18):1724–1745. https://doi.org/10.1089/ars.2017.7111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar A, Foster TC (2013) Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 33(40):15710–15715. https://doi.org/10.1523/JNEUROSCI.2176-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes CA, Rao G, Shen J (1997) Age-related decrease in the N-methyl-D-aspartateR-mediated excitatory postsynaptic potential in hippocampal region CA1. Neurobiol Aging 18(4):445–452

    Article  CAS  PubMed  Google Scholar 

  12. Banks WA, Robinson SM (2010) Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 24(1):102–109. https://doi.org/10.1016/j.bbi.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  13. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213. https://doi.org/10.1016/j.bbi.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  14. Bodhinathan K, Kumar A, Foster TC (2010) Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 30(5):1914–1924. https://doi.org/10.1523/JNEUROSCI.5485-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC (2012) Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 33(4):828 e821–828 e817. https://doi.org/10.1016/j.neurobiolaging.2011.06.023

    Article  Google Scholar 

  16. Kumar A, Thinschmidt JS, Foster TC (2019) Subunit contribution to NMDA receptor hypofunction and redox sensitivity of hippocampal synaptic transmission during aging. k 11(14):5140–5157. https://doi.org/10.18632/aging.102108

    Article  CAS  Google Scholar 

  17. Bean LA, Kumar A, Rani A, Guidi M, Rosario AM, Cruz PE, Golde TE, Foster TC (2015) Re-opening the critical window for estrogen therapy. J Neurosci 35(49):16077–16093. https://doi.org/10.1523/JNEUROSCI.1890-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guidi M, Kumar A, Rani A, Foster TC (2014) Assessing the emergence and reliability of cognitive decline over the life span in Fisher 344 rats using the spatial water maze. Front Aging Neurosci 6:2. https://doi.org/10.3389/fnagi.2014.00002

    Article  PubMed  PubMed Central  Google Scholar 

  19. LaClair M, Febo M, Nephew B, Gervais NJ, Poirier G, Workman K, Chumachenko S, Payne L et al (2019) Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. eNeuro 6(4):ENEURO.0154–ENEU19.2019. https://doi.org/10.1523/ENEURO.0154-19.2019

    Article  Google Scholar 

  20. Orsini CA, Colon-Perez LM, Heshmati SC, Setlow B, Febo M (2018) Functional connectivity of chronic cocaine use reveals progressive neuroadaptations in neocortical, striatal, and limbic networks. eNeuro 5(4):ENEURO.0081–ENEU18.2018. https://doi.org/10.1523/ENEURO.0081-18.2018

    Article  Google Scholar 

  21. Colon-Perez LM, Tran K, Thompson K, Pace MC, Blum K, Goldberger BA, Gold MS, Bruijnzeel AW et al (2016) The psychoactive designer drug and Bath salt constituent MDPV causes widespread disruption of brain functional connectivity. Neuropsychopharmacology 41(9):2352–2365. https://doi.org/10.1038/npp.2016.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    Article  PubMed  Google Scholar 

  23. Cox RW (1996) AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Article  CAS  PubMed  Google Scholar 

  24. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  25. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2 Pt 2):026113. https://doi.org/10.1103/PhysRevE.69.026113

    Article  CAS  Google Scholar 

  26. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. https://doi.org/10.1137/S003614450342480

    Article  Google Scholar 

  27. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308. https://doi.org/10.1016/j.physrep.2005.10.009

    Article  Google Scholar 

  28. Saramaki J, Kivela M, Onnela JP, Kaski K, Kertesz J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 75(2 Pt 2):027105. https://doi.org/10.1103/PhysRevE.75.027105

    Article  CAS  Google Scholar 

  29. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3(4):e0002051. https://doi.org/10.1371/journal.pone.0002051

    Article  CAS  PubMed  Google Scholar 

  30. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  31. Newman ME (2018) Networks: an introduction, 2nd Edition. Oxford University Press, Oxford, England.

  32. Han X, Aenlle KK, Bean LA, Rani A, Semple-Rowland SL, Kumar A, Foster TC (2013) Role of estrogen receptor alpha and beta in preserving hippocampal function during aging. J Neurosci 33(6):2671–2683. https://doi.org/10.1523/JNEUROSCI.4937-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A et al (2017) Hippocampal transcriptomic profiles: subfield vulnerability to age and cognitive impairment. Front Aging Neurosci 9:383. https://doi.org/10.3389/fnagi.2017.00383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ianov L, Rani A, Beas BS, Kumar A, Foster TC (2016) Transcription profile of aging and cognition-related genes in the medial prefrontal cortex. Front Aging Neurosci 8:113. https://doi.org/10.3389/fnagi.2016.00113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeisberger E, Roth J (1998) Tolerance to pyrogens. Ann N Y Acad Sci 856:116–131. https://doi.org/10.1111/j.1749-6632.1998.tb08320.x

    Article  CAS  PubMed  Google Scholar 

  36. Foster TC (2019) Senescent neurophysiology: Ca(2+) signaling from the membrane to the nucleus. Neurobiol Learn Mem 164:107064. https://doi.org/10.1016/j.nlm.2019.107064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erickson MA, Banks WA (2011) Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun 25(8):1637–1648. https://doi.org/10.1016/j.bbi.2011.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. https://doi.org/10.1038/nrn2733

    Article  CAS  PubMed  Google Scholar 

  39. Schram MT, Euser SM, de Craen AJ, Witteman JC, Frolich M, Hofman A, Jolles J, Breteler MM et al (2007) Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc 55(5):708–716. https://doi.org/10.1111/j.1532-5415.2007.01159.x

    Article  PubMed  Google Scholar 

  40. Bourassa K, Sbarra DA (2017) Body mass and cognitive decline are indirectly associated via inflammation among aging adults. Brain Behav Immun 60:63–70. https://doi.org/10.1016/j.bbi.2016.09.023

    Article  PubMed  Google Scholar 

  41. Arai K, Matsuki N, Ikegaya Y, Nishiyama N (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol 87(3):195–201

    Article  CAS  PubMed  Google Scholar 

  42. Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFkappaB signaling pathway. Sci Rep 6:24493. https://doi.org/10.1038/srep24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anaeigoudari A, Soukhtanloo M, Shafei MN, Sadeghnia HR, Reisi P, Beheshti F, Behradnia S, Mousavi SM et al (2016) Neuronal nitric oxide synthase has a role in the detrimental effects of lipopolysaccharide on spatial memory and synaptic plasticity in rats. Pharmacol Rep 68(2):243–249. https://doi.org/10.1016/j.pharep.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, Jiang R, Yang L et al (2018) Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience 388:357–366. https://doi.org/10.1016/j.neuroscience.2018.07.052

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham C, Sanderson DJ (2008) Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory. Brain Behav Immun 22(8):1117–1127. https://doi.org/10.1016/j.bbi.2008.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316. https://doi.org/10.1002/glia.22930

    Article  PubMed  Google Scholar 

  47. Dipasquale O, Cooper EA, Tibble J, Voon V, Baglio F, Baselli G, Cercignani M, Harrison NA (2016) Interferon-alpha acutely impairs whole-brain functional connectivity network architecture - a preliminary study. Brain Behav Immun 58:31–39. https://doi.org/10.1016/j.bbi.2015.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Labrenz F, Wrede K, Forsting M, Engler H, Schedlowski M, Elsenbruch S, Benson S (2016) Alterations in functional connectivity of resting state networks during experimental endotoxemia - an exploratory study in healthy men. Brain Behav Immun 54:17–26. https://doi.org/10.1016/j.bbi.2015.11.010

    Article  PubMed  Google Scholar 

  49. Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24(11):2186–2198. https://doi.org/10.1162/jocn_a_00269

    Article  PubMed  Google Scholar 

  50. Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2015) A brain-wide study of age-related changes in functional connectivity. Cereb Cortex 25(7):1987–1999. https://doi.org/10.1093/cercor/bhu012

    Article  PubMed  Google Scholar 

  51. Varangis E, Razlighi Q, Habeck CG, Fisher Z, Stern Y (2019) Between-network functional connectivity is modified by age and cognitive task domain. J Cogn Neurosci 31(4):607–622. https://doi.org/10.1162/jocn_a_01368

    Article  PubMed  PubMed Central  Google Scholar 

  52. Foster TC (2012) Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 96(3):283–303. https://doi.org/10.1016/j.pneurobio.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masser DR, Bixler GV, Brucklacher RM, Yan H, Giles CB, Wren JD, Sonntag WE, Freeman WM (2014) Hippocampal subregions exhibit both distinct and shared transcriptomic responses to aging and nonneurodegenerative cognitive decline. J Gerontol A Biol Sci Med Sci 69(11):1311–1324. https://doi.org/10.1093/gerona/glu091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valero J, Mastrella G, Neiva I, Sanchez S, Malva JO (2014) Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Front Neurosci 8:83. https://doi.org/10.3389/fnins.2014.00083

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, McLinden KA, Boehm GW, Chumley MJ (2012) Prolonged elevation in hippocampal Abeta and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229(1):176–184. https://doi.org/10.1016/j.bbr.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  56. Fischer CW, Elfving B, Lund S, Wegener G (2015) Behavioral and systemic consequences of long-term inflammatory challenge. J Neuroimmunol 288:40–46. https://doi.org/10.1016/j.jneuroim.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  57. Yegla B, Foster T (2019) Effect of systemic inflammation on rat attentional function and neuroinflammation: possible protective role for food restriction. Front Aging Neurosci 11:296. https://doi.org/10.3389/fnagi.2019.00296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Foster TC (1999) Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Brain Res Rev 30(3):236–249. https://doi.org/10.1016/s0165-0173(99)00017-x

    Article  CAS  PubMed  Google Scholar 

  59. Ishihara Y, Takemoto T, Itoh K, Ishida A, Yamazaki T (2015) Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses. J Biol Chem 290(37):22805–22817. https://doi.org/10.1074/jbc.M115.659151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77(4):540–551. https://doi.org/10.1002/jnr.20180

    Article  CAS  PubMed  Google Scholar 

  61. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279(2):1415–1421. https://doi.org/10.1074/jbc.M307657200

    Article  CAS  PubMed  Google Scholar 

  62. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM (2007) Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85(4):462–472. https://doi.org/10.1016/j.exer.2007.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lynch MA (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta? Prog Neurobiol 56(5):571–589

    Article  CAS  PubMed  Google Scholar 

  64. Sunico CR, Gonzalez-Forero D, Dominguez G, Garcia-Verdugo JM, Moreno-Lopez B (2010) Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation. J Neurosci 30(3):973–984. https://doi.org/10.1523/JNEUROSCI.3911-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vereker E, O’Donnell E, Lynch A, Kelly A, Nolan Y, Lynch MA (2001) Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. Eur J Neurosci 14(11):1809–1819. https://doi.org/10.1046/j.0953-816x.2001.01809.x

    Article  CAS  PubMed  Google Scholar 

  66. Scheinert RB, Asokan A, Rani A, Kumar A, Foster TC, Ormerod BK (2015) Some hormone, cytokine and chemokine levels that change across lifespan vary by cognitive status in male Fischer 344 rats. Brain Behav Immun 49:216–232. https://doi.org/10.1016/j.bbi.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar A, Rani A, Scheinert RB, Ormerod BK, Foster TC (2018) Nonsteroidal anti-inflammatory drug, indomethacin improves spatial memory and NMDA receptor function in aged animals. Neurobiol Aging 70:184–193. https://doi.org/10.1016/j.neurobiolaging.2018.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mladenovic Djordjevic A, Perovic M, Tesic V, Tanic N, Rakic L, Ruzdijic S, Kanazir S (2010) Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat. Neurochem Int 56(2):250–255. https://doi.org/10.1016/j.neuint.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  69. Nyffeler M, Zhang WN, Feldon J, Knuesel I (2007) Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol Aging 28(1):143–155. https://doi.org/10.1016/j.neurobiolaging.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  70. VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43(1):201–212. https://doi.org/10.1016/j.nbd.2011.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang R, Tang Y, Feng B, Ye C, Fang L, Zhang L, Li L (2007) Changes in hippocampal synapses and learning-memory abilities in age-increasing rats and effects of tetrahydroxystilbene glucoside in aged rats. Neuroscience 149(4):739–746. https://doi.org/10.1016/j.neuroscience.2007.07.065

    Article  CAS  PubMed  Google Scholar 

  72. Magnusson KR, Brim BL, Das SR (2010) Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front Aging Neurosci 2:11. https://doi.org/10.3389/fnagi.2010.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gemma C, Stellwagen H, Fister M, Coultrap SJ, Mesches MH, Browning MD, Bickford PC (2004) Rosiglitazone improves contextual fear conditioning in aged rats. Neuroreport 15(14):2255–2259. https://doi.org/10.1097/00001756-200410050-00023

    Article  CAS  PubMed  Google Scholar 

  74. Marquez Loza A, Elias V, Wong CP, Ho E, Bermudez M, Magnusson KR (2017) Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience 344:276–292. https://doi.org/10.1016/j.neuroscience.2016.12.041

    Article  CAS  PubMed  Google Scholar 

  75. Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, Browning MD, Bickford PC (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25(3):315–324. https://doi.org/10.1016/S0197-4580(03)00116-7

    Article  CAS  PubMed  Google Scholar 

  76. Shen X, Sun Y, Wang M, Shu H, Zhu LJ, Yan PY, Zhang JF, Jin X (2018) Chronic N-acetylcysteine treatment alleviates acute lipopolysaccharide-induced working memory deficit through upregulating caveolin-1 and synaptophysin in mice. Psychopharmacology 235(1):179–191. https://doi.org/10.1007/s00213-017-4762-y

    Article  CAS  PubMed  Google Scholar 

  77. Zhang S, Wang X, Ai S, Ouyang W, Le Y, Tong J (2017) Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice. PLoS One 12(11):e0188273. https://doi.org/10.1371/journal.pone.0188273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zong MM, Yuan HM, He X, Zhou ZQ, Qiu XD, Yang JJ, Ji MH (2019) Disruption of striatal-enriched protein tyrosine phosphatase signaling might contribute to memory impairment in a mouse model of sepsis-associated encephalopathy. Neurochem Res 44(12):2832–2842. https://doi.org/10.1007/s11064-019-02905-2

    Article  CAS  PubMed  Google Scholar 

  79. Kan MH, Yang T, Fu HQ, Fan L, Wu Y, Terrando N, Wang TL (2016) Pyrrolidine dithiocarbamate prevents neuroinflammation and cognitive dysfunction after endotoxemia in rats. Front Aging Neurosci 8:175. https://doi.org/10.3389/fnagi.2016.00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bian Y, Zhao X, Li M, Zeng S, Zhao B (2013) Various roles of astrocytes during recovery from repeated exposure to different doses of lipopolysaccharide. Behav Brain Res 253:253–261. https://doi.org/10.1016/j.bbr.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  81. Maggio N, Shavit-Stein E, Dori A, Blatt I, Chapman J (2013) Prolonged systemic inflammation persistently modifies synaptic plasticity in the hippocampus: modulation by the stress hormones. Front Mol Neurosci 6:46. https://doi.org/10.3389/fnmol.2013.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sheppard O, Coleman MP, Durrant CS (2019) Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. J Neuroinflammation 16(1):106. https://doi.org/10.1186/s12974-019-1490-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Efron PA, Moldawer LL, Foster TC (2019) Age and sex influence the hippocampal response and recovery following sepsis. Mol Neurobiol 56:8557–8572. https://doi.org/10.1007/s12035-019-01681-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. https://doi.org/10.1038/nature12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barter JD, Foster TC (2018) Aging in the brain: new roles of epigenetics in cognitive decline. Neuroscientist:1073858418780971. https://doi.org/10.1177/1073858418780971

Download references

Acknowledgments

Special thanks to Nick Sarantos, Sophia Eikenberry, and Valentina Lavieri-Sosa for their assistance in animal handling and behavior assessment.

Funding

This study was financially supported by the National Institute of Aging grants R01AG037984, R37AG036800, R01049711, and R01052258 and the Evelyn F. McKnight Brain Research Foundation. This work was partially supported by the University of Florida Claude D Pepper Older American Independence Center (P30-AG028740). Authors also received financial support from the National High Magnetic Field Laboratory’s Advanced Magnetic Resonance Imaging & Spectroscopy (AMRIS) Facility (National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Foster.

Ethics declarations

All procedures involving animals were approved by the Institutional Animal Care and Use Committee at the University of Florida and were in agreement with guidelines recognized by the U.S. Public Health Service Policy on Humane Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 6370 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barter, J., Kumar, A., Rani, A. et al. Differential Effect of Repeated Lipopolysaccharide Treatment and Aging on Hippocampal Function and Biomarkers of Hippocampal Senescence. Mol Neurobiol 57, 4045–4059 (2020). https://doi.org/10.1007/s12035-020-02008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02008-y

Keywords

Navigation