American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, DSM-5 (2013) Am Psychiatr Publ. http://www.dsm5.org. Accessed 1 Apr 2019
Thomas R, Sanders S, Doust J, Beller E, Glasziou P (2015) Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135:e994e1001. https://doi.org/10.1542/peds.2014-3482
Article
Google Scholar
Simon V, Czobor P, Bálint S, Mészáros A, Bitter I (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 194:204–211. https://doi.org/10.1192/bjp.bp.107.048827
Article
PubMed
Google Scholar
Karsz FR, Vance A, Anderson VA, Brann PG, Wood SJ, Pantelis C, Brewer WJ (2008) Olfactory impairments in child attention-deficit/hyperactivity disorder. J Clin Psychiatry 69:1462–1468. https://doi.org/10.4088/JCP.v69n0914
Article
PubMed
Google Scholar
Ghanizadeh A, Bahrani M, Miri R, Sahraian A (2012) Smell identification function in children with attention deficit hyperactivity disorder. Psychiatry Investig 9:150–153. https://doi.org/10.4306/pi.2012.9.2.150
Article
PubMed
PubMed Central
Google Scholar
Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, Rohde LA, Sonuga-Barke EJS et al (2015) Attention-deficit/hyperactivity disorder. Nat Rev Dis Prim 1:15020. https://doi.org/10.1038/nrdp.2015.20
Article
PubMed
Google Scholar
Purper-Ouakil D, Ramoz N, Lepagnol-Bestel AM, Gorwood P, Simonneau M (2011) Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res 69:69R–76R. https://doi.org/10.1203/PDR.0b013e318212b40f
Article
PubMed
Google Scholar
Tripp G, Wickens JR (2009) Neurobiology of ADHD. Neuropharmacology 57:579–589. https://doi.org/10.1016/j.neuropharm.2009.07.026
CAS
Article
PubMed
Google Scholar
Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One 8:e60274–e60274. https://doi.org/10.1371/journal.pone.0060274
CAS
Article
PubMed
PubMed Central
Google Scholar
Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M (2016) SNAP-25, a known presynaptic protein with emerging postsynaptic functions. Front Synaptic Neurosci 8:7. https://doi.org/10.3389/fnsyn.2016.00007
CAS
Article
PubMed
PubMed Central
Google Scholar
Molero Y, Gumpert C, Serlachius E, Lichtenstein P, Walum H, Johansson D, Anckarsäter H, Westberg L et al (2013) A study of the possible association between adenosine A2A receptor gene polymorphisms and attention-deficit hyperactivity disorder traits. Genes Brain Behav 12:305–310. https://doi.org/10.1111/gbb.12015
CAS
Article
PubMed
Google Scholar
França AP, Takahashi RN, Cunha RA, Prediger RD (2018) Promises of caffeine in attention-deficit/hyperactivity disorder: from animal models to clinical practice. J Caffeine Adenosine Res 8:4–142. https://doi.org/10.1089/caff.2018.0016
CAS
Article
Google Scholar
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133
CAS
PubMed
Google Scholar
Cunha RA, Ferré S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524. https://doi.org/10.2174/138161208784480090
CAS
Article
PubMed
PubMed Central
Google Scholar
Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019–1055. https://doi.org/10.1111/jnc.13724
CAS
Article
PubMed
Google Scholar
Harvey DH, Marsh RW (1978) The effects of de-caffeinated coffee versus whole coffee on hyperactive children. Dev Med Child Neurol 20:81–86. https://doi.org/10.1111/j.1469-8749.1978.tb15183.x
CAS
Article
PubMed
Google Scholar
Huestis R, Arnold L, Smeltzer D (1975) Caffeine versus methylphenidate and d-amphetamine in minimal brain dysfunction: a double-blind comparison. Am J Psychiatry 132:868–870. https://doi.org/10.1176/ajp.132.8.868
CAS
Article
PubMed
Google Scholar
Garfinkel BD, Webster CD, Sloman L (1975) Individual responses to methylphenidate and caffeine in children with minimal brain dysfunction. Can Med Assoc J 113:729–732
CAS
PubMed
PubMed Central
Google Scholar
Marmorstein NR (2016) Energy drink and coffee consumption and psychopathology symptoms among early adolescents: cross-sectional and longitudinal associations. J Caffeine Res 6:64–72. https://doi.org/10.1089/jcr.2015.0018
CAS
Article
PubMed
PubMed Central
Google Scholar
Pires VA, Pamplona FA, Pandolfo P, Prediger RDS, Takahashi RN (2010) Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 215:39–44. https://doi.org/10.1016/j.bbr.2010.06.022
CAS
Article
PubMed
Google Scholar
Pandolfo P, Machado NJ, Köfalvi A, Takahashi RN, Cunha RA (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 23:317–328. https://doi.org/10.1016/j.euroneuro.2012.04.011
CAS
Article
PubMed
Google Scholar
Prediger RDS, Pamplona FA, Fernandes D, Takahashi RN (2005) Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD)-the spontaneously hypertensive rat (SHR). Int J Neuropsychopharmacol 8:583–594. https://doi.org/10.1017/S1461145705005341
CAS
Article
PubMed
Google Scholar
Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci 54:1–25. https://doi.org/10.1002/0471142301.ns0935s54
Article
Google Scholar
Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247. https://doi.org/10.1016/j.biopsych.2005.02.002
Article
PubMed
Google Scholar
Nunes F, Pochmann D, Almeida AS, Marques DM, Porciúncula LO (2018) Differential behavioral and biochemical responses to caffeine in male and female rats from a validated model of attention deficit and hyperactivity disorder. Mol Neurobiol 55:8486–8498. https://doi.org/10.1007/s12035-018-1000-5
CAS
Article
PubMed
Google Scholar
Prediger RDS, Fernandes D, Takahashi RN (2005) Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 159:197–205. https://doi.org/10.1016/j.bbr.2004.10.017
CAS
Article
PubMed
Google Scholar
Alves CB, Almeida AS, Marques DM, Faé AHL, Machado ACL, Oliveira DL, Cruz Portela LV, Porciúncula LO (2019) Caffeine and adenosine A2A receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model of attention deficit and hyperactivity disorder. Neuropharmacology 107782:107782. https://doi.org/10.1016/j.neuropharm.2019.107782
CAS
Article
Google Scholar
Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65. https://doi.org/10.1038/nrn2298
CAS
Article
PubMed
Google Scholar
Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Pardo-Guijarro MJ, Santos Gómez JL, Martínez-Vizcaíno V (2015) The effects of physical exercise in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized control trials. Child Care Health Dev 41:779–788. https://doi.org/10.1111/cch.12255
CAS
Article
PubMed
Google Scholar
Medina JA, Netto TLB, Muszkat M, Medina AC, Botter D, Orbetelli R, Scaramuzza LFC, Sinnes EG et al (2010) Exercise impact on sustained attention of ADHD children, methylphenidate effects. Atten Deficit Hyperact Disord 2:49–58. https://doi.org/10.1007/s12402-009-0018-y
Article
Google Scholar
Robinson AM, Eggleston RL, Bucci DJ (2012) Physical exercise and catecholamine reuptake inhibitors affect orienting behavior and social interaction in a rat model of attention-deficit/hyperactivity disorder. Behav Neurosci 126:762–771. https://doi.org/10.1037/a0030488
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim H, Heo HI, Kim DH, Ko IG, Lee SS, Kim SE, Kim BK, Kim TW et al (2011) Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neurosci Lett 504:35–39. https://doi.org/10.1016/j.neulet.2011.08.052
CAS
Article
PubMed
Google Scholar
Ardais AP, Rocha AS, Borges MF, Fioreze GT, Sallaberry C, Mioranzza S, Nunes F, Pagnussat N et al (2016) Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behav Brain Res 303:76–84. https://doi.org/10.1016/j.bbr.2016.01.026
CAS
Article
PubMed
Google Scholar
Prediger RDS, Batista LC, Takahashi RN (2004) Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats: involvement of adenosine A1 and A2A receptors. Neurobiol Aging 26:957–964. https://doi.org/10.1016/j.neurobiolaging.2004.08.012
CAS
Article
Google Scholar
Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59. https://doi.org/10.1016/0166-4328(88)90157-X
CAS
Article
PubMed
Google Scholar
Prediger RDS, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202:391–403. https://doi.org/10.1016/j.expneurol.2006.07.001
CAS
Article
PubMed
Google Scholar
Canas PM, Porciúncula LO, Cunha GMA, Silva CG, Machado NJ, Oliveira JMA, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751. https://doi.org/10.1523/JNEUROSCI.3728-09.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Scheffer DL, Ghisoni K, Aguiar AS Jr, Latini A (2019) Moderate running exercise prevents excessive immune system activation. Physiol Behav 15:204-248-255. https://doi.org/10.1016/j.physbeh.2019.02.023
CAS
Article
Google Scholar
Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
CAS
PubMed
Google Scholar
Pires VA, Pamplona F, Pandolfo P, Fernandes D, Prediger R, Takahashi R (2009) Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 20:134–145. https://doi.org/10.1097/FBP.0b013e32832a80bf
CAS
Article
PubMed
Google Scholar
Prediger RD, França AP, Izídio GS, Takahashi RN (2018) The use of object recognition task in animal models of atention-deficit hyperactivity disorder. In: Ennaceur A (ed) Handbook of object novelty recognition, 1st edn. Academic, pp. 341–357. https://doi.org/10.1016/B978-0-12-812012-5.00023-9
Schecklmann M, Schwenck C, Taurines R, Freitag C, Warnke A, Gerlach M, Romanos M (2013) A systematic review on olfaction in child and adolescent psychiatric disorders. J Neural Transm 120:121–130. https://doi.org/10.1007/s00702-012-0855-2
CAS
Article
PubMed
Google Scholar
Gunn RK, Keenan ME, Brown RE (2011) Analysis of sensory, motor and cognitive functions of the coloboma (C3Sn.Cg-Cm/J) mutant mouse. Genes Brain Behav 10:579–588. https://doi.org/10.1111/j.1601-183X.2011.00697.x
CAS
Article
PubMed
Google Scholar
Gansler DA, Fucetola R, Krengel M, Stetson S, Zimering R, Makary C (1998) Are there cognitive subtypes in adult attention deficit/hyperactivity disorder? J Nerv Ment Dis 186:776–781
CAS
Article
Google Scholar
Sohrabi HR, Bates KA, Rodrigues M, Taddei K, Laws S, Lautenschlager NT, Dhaliwal S, Johnston A et al (2009) Olfactory dysfunction is associated with subjective memory complaints in community-dwelling elderly individuals. J Alzheimers Dis 17:135–142. https://doi.org/10.3233/JAD-2009-1020
Article
PubMed
Google Scholar
De Wijk RA, Cain WS (1994) Odor quality: discrimination versus free and cued identification. Percept Psychophys 56:12–18. https://doi.org/10.3758/BF03211686
Article
PubMed
Google Scholar
Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463. https://doi.org/10.1016/S0149-7634(00)00014-2
CAS
Article
PubMed
Google Scholar
Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, Takahashi RN (2002) Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res 129:113–123. https://doi.org/10.1016/S0166-4328(01)00337-0
Article
PubMed
Google Scholar
Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochim Biophys Acta 1792:766–776. https://doi.org/10.1016/j.bbadis.2009.05.006
CAS
Article
PubMed
Google Scholar
Kim Y, Jeon S, Jeong HJ, Lee SM, Dela Peña I, Kim HJ, Han DH, Kim BN et al (2019) Restoration of Cdk5, TrkB and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins after chronic methylphenidate treatment in spontaneous hypertensive rats, a model for attention-deficit hyperactivity disorder. Psychiatry Investig 16:558–564. https://doi.org/10.30773/pi.2019.04.22
CAS
Article
PubMed
PubMed Central
Google Scholar
Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63:1155–1162. https://doi.org/10.1212/01.WNL.0000140626.48118.0A
Article
PubMed
Google Scholar
Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (2006) Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 81:47–63. https://doi.org/10.1016/j.schres.2005.08.014
Article
PubMed
Google Scholar
Canas PM, Porciúncula LO, Simões AP, Augusto E, Silva HB, Machado NJ, Gonçalves N, Alfaro TM et al (2018) Neuronal adenosine A2A receptors are critical mediators of neurodegeneration triggered by convulsions. ENeuro 5:ENEURO.0385-18.2018. https://doi.org/10.1523/ENEURO.0385-18.2018
Article
PubMed
PubMed Central
Google Scholar
Aguiar AS, Moreira ELG, Hoeller AA, Oliveira PA, Córdova FM, Glaser V, Walz R, Cunha RA et al (2013) Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 243:46–53. https://doi.org/10.1016/j.neuroscience.2013.03.039
CAS
Article
PubMed
Google Scholar
Jeong HI, Ji ES, Kim SH, Kim TW, Baek SB, Choi SW (2014) Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats. J Exerc Rehabil 10:162–167. https://doi.org/10.12965/jer.140111
Article
PubMed
PubMed Central
Google Scholar
Cunha MP, Oliveira A, Pazini FL, Machado DG, Bettio LEB, Budni J, Aguiar ASJR, Martins DF et al (2013) The antidepressant-like effect of physical activity on a voluntary running wheel. Med Sci Sports Exerc 45(5):851–859. https://doi.org/10.1249/MSS.0b013e31827b23e6
CAS
Article
PubMed
Google Scholar
Vaynman SS, Ying Z, Yin D, Gomez-Pinilla F (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res 1070:124–130. https://doi.org/10.1016/j.brainres.2005.11.062
CAS
Article
PubMed
Google Scholar
Cognato GP, Agostinho PM, Hockemeyer J, Müller CE, Souza DO, Cunha RA (2010) Caffeine and an adenosine A2A receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112:453–462. https://doi.org/10.1111/j.1471-4159.2009.06465.x
CAS
Article
PubMed
Google Scholar
Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301. https://doi.org/10.1016/S0166-2236(02)02143-4
CAS
Article
PubMed
Google Scholar
Purper-Ouakil D, Ramoz N, Lepagnol-Bestel AM, Gorwood P, Simonneau M (2001) Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res 69:69–76. https://doi.org/10.1203/PDR.0b013e318212b40f
Article
Google Scholar
Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67:728–734. https://doi.org/10.1016/j.neuron.2010.08.040
CAS
Article
PubMed
PubMed Central
Google Scholar
Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590. https://doi.org/10.1111/j.1460-9568.2004.03720.x
Article
PubMed
Google Scholar
Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. https://doi.org/10.3389/neuro.02.001.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, Cunha RA (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 10:16. https://doi.org/10.1186/1742-2094-10-16
CAS
Article
PubMed
PubMed Central
Google Scholar
Ardais AP, Borges MF, Rocha AS, Sallaberry C, Cunha RA, Porciúncula LO (2014) Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience 270:27–39. https://doi.org/10.1016/j.neuroscience.2014.04.003
CAS
Article
PubMed
Google Scholar
Aguiar AS, Stragier E, Scheffer DL, Remor AP, Oliveira PA, Prediger RD, Latini A, Raisman-Vozari R et al (2014) Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience 271:56–63. https://doi.org/10.1016/j.neuroscience.2014.04.027
CAS
Article
PubMed
Google Scholar
Ferré S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, Luis C, Franco R et al (2008) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474. https://doi.org/10.2174/138161208784480108
Article
PubMed
PubMed Central
Google Scholar
Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ et al (2007) Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17:39–59. https://doi.org/10.1007/s11065-007-9019-9
Article
PubMed
Google Scholar
Wilens TE (2008) Pharmacotherapy of ADHD in adults. CNS Spectr 13:11–13. https://doi.org/10.1017/S1092852900002960
Article
PubMed
Google Scholar
Jensen CM, Steinhausen HC (2015) Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten Deficit Hyperact Disord 7:27–38. https://doi.org/10.1007/s12402-014-0142-1
Article
Google Scholar
Xie J, Hodgkins P, Betts KA, Wu EQ, Erder MH, Zhou Z, DeLeon A, Sikirica V (2014) Period prevalence of concomitant psychotropic medication usage among children and adolescents with attention-deficit/hyperactivity disorder during 2009. J Child Adolesc Psychopharmacol 24:260–268. https://doi.org/10.1089/cap.2013.0107
CAS
Article
PubMed
Google Scholar
Catalá-López F, Hutton B, Núñez-Beltrán A, Page MJ, Ridao M, Macías Saint-Gerons D, Catalá MA, Tabarés-Seisdedos R et al (2017) The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: a systematic review with network meta-analyses of randomised trials. PLoS One 12:e0180355. https://doi.org/10.1371/journal.pone.0180355
CAS
Article
PubMed
PubMed Central
Google Scholar
Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270. https://doi.org/10.1016/j.neubiorev.2018.02.001
CAS
Article
PubMed
Google Scholar