Skip to main content

Advertisement

Log in

Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the neurobiological basis for autism spectrum disorder (ASD) has not yet been fully clarified, converging lines of evidence implicated a role of neuroinflammation in the etiological pathway of this disorder. The present article provided a systematic review of publications regarding the involvement of different components of neuroinflammation in postmortem brain samples of subjects diagnosed with ASD. A systematic search of PubMed, Embase, and Web of Science was conducted, which was supplemented by manual searching of reference lists of included articles. The screening for study and extraction of data were conducted by two independent authors after reviewing the abstract and full text. Of 356 articles identified in the literature search, 27 articles comprising 685 subjects (ASD = 313, controls = 351, schizophrenia = 10, epilepsy = 11) covering 19 brain regions met the eligibility criteria for this review. The search yielded 11 studies that estimated astrocyte-related changes, 8 studies that reported microglia-related changes, 2 studies that evaluated oligodendrocyte-related changes, 3 studies that examined changes in glial cells without differentiating cell types, 6 studies that evaluated the levels of cytokines and chemokines, and 7 studies that measured other inflammatory parameters in postmortem brain samples of subjects with ASD compared with controls. Although a few studies noted a lack of changes in neuroinflammatory markers in postmortem brain samples of ASD subjects, the majority of studies supported the presence of neuroinflammation in the neurobiological pattern of ASD as shown by activation of astrocytes and microglia together with abnormal levels of cytokines and chemokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almehmadi KA, Tsilioni I, Theoharides TC. (2020)Increased Expression of miR-155p5 in Amygdala of Children With Autism Spectrum Disorder. Autism Res. 13(1):18–23

  2. Arikawa M, Kakinuma Y, Noguchi T et al (2016) Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation. Eur J Pharmacol 789:17–26

    CAS  PubMed  Google Scholar 

  3. Ashwood P, Enstrom A, Krakowiak P et al (2008) Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204:149–153

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45

    CAS  PubMed  Google Scholar 

  5. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W et al (2018) Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67:1–23

    PubMed  PubMed Central  Google Scholar 

  6. Broek JAC, Guest PC, Rahmoune H, Bahn S (2014) Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism. 5(1):41

    PubMed  PubMed Central  Google Scholar 

  7. Cao F, Yin A, Wen G, Sheikh AM, Tauqeer Z, Malik M, Nagori A, Schirripa M et al (2012) Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects. J Neuroinflammation 9(1):223

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chana G, Laskaris L, Pantelis C, Gillett P, Testa R, Zantomio D, Burrows EL, Hannan AJ et al (2015) Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: pathophysiological and neurobehavioral implications. Brain Behav Immun 49:197–205

    CAS  PubMed  Google Scholar 

  9. Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36:361–365

    PubMed  Google Scholar 

  10. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 504:394–400

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23:153–170

    PubMed  Google Scholar 

  13. Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA. 290:337–344

    PubMed  Google Scholar 

  14. Crawford JD, Chandley MJ, Szebeni K, Szebeni A, Waters B, Ordway GA (2015) Elevated GFAP protein in anterior cingulate cortical white matter in males with autism spectrum disorder. Autism Res 8(6):649–657

    PubMed  Google Scholar 

  15. DiStasio MM, Nagakura I, Nadler MJ et al (2019) T lymphocytes and cytotoxic astrocyte blebs correlate across autism brains. Ann Neurol 86(6):885–898

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014) Histamine induces up-regulated expression of histamine receptors and increases release of inflammatory mediators from microglial. Mol Neurobiol 49:1487–1500

    CAS  PubMed  Google Scholar 

  17. Edmonson C, Ziats MN, Rennert OM (2014) Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 5(1):3

    PubMed  PubMed Central  Google Scholar 

  18. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    PubMed  PubMed Central  Google Scholar 

  19. Enstrom AM, Lit L, Onore CE et al (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17:485–495

    Google Scholar 

  20. Enstrom AM, Onore CE, Van de Water JA et al (2010) Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav Immun 24:64–71

    CAS  PubMed  Google Scholar 

  21. Fatemi SH, Folsom TD, Reutiman TJ, Lee S (2008) Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse. 62(7):501–507

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, Kelly DL, Cascella N et al (2016) Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 7(1):49

    PubMed  PubMed Central  Google Scholar 

  23. Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30(3):303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giuliani C, Napolitano G, Bucci I, Montani V, Monaco F (2001) NF-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications. La Clinica Terapeutica 152(4):249–253

    CAS  PubMed  Google Scholar 

  25. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell. 140:918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Handen BL, Johnson CR, McAuliffe-Bellin S, Murray PJ, Hardan AY (2011) Safety and efficacy of donepezil in children and adolescents with autism: neuropsychological measures. J Child Adolesc Psychopharmacol 21(1):43–50

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen S, Schendel D, Parner E (2015) Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practice. JAMA Pediatr 169(1):56–62

    PubMed  Google Scholar 

  28. Hashim H, Abdelrahman H, Mohammed D, Karam R (2013) Association between plasma levels of transforming growth factor-β1, IL-23 and IL-17 and the severity of autism in Egyptian children. Res Autism Spectrum Disord 7:199–204

    Google Scholar 

  29. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, Elison JT, Swanson MR et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature. 542(7641):348–351

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Karvat G, Kimchi T (2014) Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology. 39(4):831–840

    CAS  PubMed  Google Scholar 

  31. Kim JW, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, Choi CS, Kim KC et al (2014) Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS One 9(8):e104927

    PubMed  PubMed Central  Google Scholar 

  32. Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Hansen RL, Hertz-Picciotto I, van de Water J (2017) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry 81:442–451

    CAS  PubMed  Google Scholar 

  33. Krueger DD, Bear MF (2011) Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med 62:411–429

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lange N, Travers BG, Bigler ED, Prigge MBD, Froehlich AL, Nielsen JA, Cariello AN, Zielinski BA et al (2015) Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Res 8(1):82–93

    PubMed  Google Scholar 

  35. Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum. 4:206–210

    CAS  PubMed  Google Scholar 

  36. Lee AS, Azmitia EC, Whitaker-Azmitia PM (2017a) Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav Immun 62:193–202

    PubMed  Google Scholar 

  37. Lee TT, Skafidas E, Dottori M, Zantomio D, Pantelis C, Everall I, Chana G (2017b) No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism. Mol Autism. 8(1):64

    PubMed  PubMed Central  Google Scholar 

  38. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T et al (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Masi A, Glozier N, Dale R, Guastella AJ (2017) The immune system, cytokines, and biomarkers in autism spectrum disorder. Neurosci Bull 33:194–204

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Menassa DA, Sloan C, Chance SA (2017) Primary olfactory cortex in autism and epilepsy: increased glial cells in autism. Brain Pathol 27(4):437–448

    PubMed  Google Scholar 

  41. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012

    Google Scholar 

  42. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68(4):368–376

    PubMed  Google Scholar 

  43. Morgan JT, Chana G, Abramson I et al (2012) Abnormal microglial–neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res 1456(none):72–81

    CAS  PubMed  Google Scholar 

  44. Morgan JT, Barger N, Amaral DG, Schumann CM (2014) Stereological study of amygdala glial populations in adolescents and adults with autism spectrum disorder. PLoS One 9(10):e110356

    PubMed  PubMed Central  Google Scholar 

  45. Najjar S, Pearlman DM, Alper K et al (2013) Neuroinflammation and psychiatric illness. J Neuroinflammation 10:43

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakanishi H, Hayashi Y, Wu Z (2011) The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior. Neuron Glia Biol 28:1–7

    CAS  Google Scholar 

  47. Napolioni V, Ober-Reynolds B, Szelinger S et al (2013) Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J Neuroinflammation 10:38

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Norden DM, Godbout JP (2013) Microglial of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39(1):19–34

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S et al (2007) Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 31:187–190

    CAS  Google Scholar 

  50. Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, Galloway D, Williams JB et al (2017) Pro-inflammatory activation of primary microglial and macrophages increases 18 kDa translocator protein expression in ro-dents but not humans. J Cereb Blood Flow Metab 37(8):2679–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17:485–495

    PubMed  Google Scholar 

  52. Patel N, Crider A, Pandya CD, Ahmed AO, Pillai A (2016) Altered mRNA levels of glucocorticoid receptor, mineralocorticoid receptor, and co-chaperones (FKBP5 and PTGES3) in the middle frontal gyrus of autism spectrum disorder subjects. Mol Neurobiol 53(4):2090–2099

    CAS  PubMed  Google Scholar 

  53. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 57(9):1618–1628

    CAS  PubMed  Google Scholar 

  54. Rodriguez JI, Kern JK (2012) Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol 7(2–4):1–9

    Google Scholar 

  55. Rose D, Ashwood P (2014) Potential cytokine biomarkers in autism spectrum disorders. Biomark Med 8:1171–1181

    CAS  PubMed  Google Scholar 

  56. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7):e134–e134

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rutter M (2005) Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatr 94:2–15

    CAS  PubMed  Google Scholar 

  58. Sahu JK, Gulati S, Sapra S, Arya R, Chauhan S, Chowdhury MR, Gupta N, Kabra M et al (2013) Effectiveness and safety of donepezil in boys with fragile X syndrome: a double-blind, randomized, controlled pilot study. J Child Neurol 28(5):570–575

    PubMed  Google Scholar 

  59. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, Wynshaw-Boris A, Colamarino SA et al (2014) Patches of disorganization in the neocortex of children with autism. N Engl J Med 370(13):1209–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Streit WJ, Mrak RE, Griffin WS (2004) Microglial and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    PubMed  PubMed Central  Google Scholar 

  61. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM (2012) Microglial in the cerebral cortex in autism. J Autism Dev Disord 42(12):2569–2258

    PubMed  Google Scholar 

  62. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    CAS  PubMed  Google Scholar 

  63. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Yong Ma S, Azmitia EC, Banerjee P et al (2013) Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res 1512:106–122

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X (2011) IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 8(1):52

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Weintraub K (2011) The prevalence puzzle: autism counts. Nature. 479(7371):22–24

    CAS  PubMed  Google Scholar 

  66. Wright C, Shin JH, Rajpurohit A, Deep-Soboslay A, Collado-Torres L, Brandon NJ, Hyde TM, Kleinman JE et al (2017) Altered expression of histamine signaling genes in autism spectrum disorder. Transl Psychiatry 7(5):e1126–e1126

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Young A, Campbell E, Lynch S et al (2011) Aberrant NF-kappaB expression in autism spectrum condition: a mechanism for neuroinflammation. Front Psychiatry 2:27

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172

    PubMed  Google Scholar 

  69. Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201

    PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 81873806) and the National Natural Science Foundation of Hunan Province (No. 5142019JJ40437).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agree to the published version of the manuscript. Xiaoli Liao conceived the manuscript idea, identified eligible studies, extracted data, drafted the manuscript, and critically reviewed the manuscript. Yiting Liu searched database, identified eligible studies, and critically reviewed the manuscript. Xi Fu searched database, extracted data, and critically reviewed the manuscript. Yamin Li conceived the manuscript idea, was responsible for funding acquisition, and critically reviewed the manuscript.

Corresponding author

Correspondence to Yamin Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Liu, Y., Fu, X. et al. Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol Neurobiol 57, 3424–3438 (2020). https://doi.org/10.1007/s12035-020-01976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01976-5

Keywords

Navigation