Skip to main content

Advertisement

Log in

Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human placenta–derived stem cells (hPSCs) with the therapeutic potential to recover from optic nerve injury have been reported. We have recently demonstrated that hPSCs have protective abilities against hypoxic damage. To improve the capacity of hPSCs, we established a hypoxia-preconditioned strain (HPPCs) using a hypoxic chamber. The hPSCs were exposed to short-term hypoxic conditions of 2.2% O2 and 5.5% CO2. We also performed in vivo experiments to demonstrate the recovery effects of HPPCs using an optic nerve injury rat model. Naïve hPSCs (and HPPCs) were injected into the optic nerve. After 1, 2, or 4 weeks, we analyzed changes in target proteins in the optic nerve tissues. In the retina, GAP43 expression was higher in both groups of naïve hPSCs and HPPCs versus sham controls. Two weeks after injection, all hPSC-injected groups showed recovery of tuj1 expression in damaged retinas. We also determined GFAP expression in retinas using the same model. In optic nerve tissues, HIF-1α levels were significantly lower in the HPPC-injected group 1 week after injury, and Thy-1 levels were higher in the hPSC-injected group at 4 weeks. There was also an enhanced recovery of Thy-1 expression after HPPC injection. In addition, R28 cells exposed to hypoxic conditions showed improved viability through enhanced recovery of HPPCs than naïve hPSCs. VEGF protein was a mediator in the recovery pathway via upregulation of target proteins regulated by HPPCs. Our results suggest that HPPCs may be candidates for cell therapy for the treatment of traumatic optic nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cafferty WB, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, Munson J, Cohen J et al (2001) Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci 21(18):7161–7170

    Article  CAS  Google Scholar 

  2. Huang Y, Li Z, van Rooijen N, Wang N, Pang CP, Cui Q (2007) Different responses of macrophages in retinal ganglion cell survival after acute ocular hypertension in rats with different autoimmune backgrounds. Exp Eye Res 85(5):659–666. https://doi.org/10.1016/j.exer.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  3. Muller A, Hauk TG, Fischer D (2007) Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130(Pt 12):3308–3320. https://doi.org/10.1093/brain/awm257

    Article  PubMed  Google Scholar 

  4. Park KK, Hu Y, Muhling J, Pollett MA, Dallimore EJ, Turnley AM, Cui Q, Harvey AR (2009) Cytokine-induced SOCS expression is inhibited by cAMP analogue: Impact on regeneration in injured retina. Mol Cell Neurosci 41(3):313–324. https://doi.org/10.1016/j.mcn.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  5. Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C, Li Z, Zaverucha-do-Valle C et al (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 106(46):19587–19592. https://doi.org/10.1073/pnas.0907085106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li S, He Q, Wang H, Tang X, Ho KW, Gao X, Zhang Q, Shen Y et al (2015) Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiol Dis 73:366–376. https://doi.org/10.1016/j.nbd.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  8. de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, Gilbert HY, Fagiolini M et al (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109(23):9149–9154. https://doi.org/10.1073/pnas.1119449109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kugler S et al (2010) Long-distance axon regeneration in the mature optic nerve: Contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30(46):15654–15663. https://doi.org/10.1523/jneurosci.4340-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol 30(9):849–857. https://doi.org/10.1038/nbt.2329

    Article  CAS  PubMed  Google Scholar 

  11. Le Blanc K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8(6):559–561. https://doi.org/10.1080/14653240601045399

    Article  CAS  PubMed  Google Scholar 

  12. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  13. Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R et al (2015) Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation 99(8):1681–1690. https://doi.org/10.1097/tp.0000000000000678

    Article  CAS  PubMed  Google Scholar 

  14. Xu W, Xu GX (2011) Mesenchymal stem cells for retinal diseases. Int J Ophthalmol 4(4):413–421. https://doi.org/10.3980/j.issn.2222-3959.2011.04.19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mesentier-Louro LA, Zaverucha-do-Valle C, Rosado-de-Castro PH, Silva-Junior AJ, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2016) Bone marrow-derived cells as a therapeutic approach to optic nerve diseases. Stem Cells Int 2016:5078619–5078616. https://doi.org/10.1155/2016/5078619

    Article  CAS  PubMed  Google Scholar 

  16. Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R et al (2014) Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 137(Pt 2):503–519. https://doi.org/10.1093/brain/awt292

    Article  PubMed  Google Scholar 

  17. Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N (2006) Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 344(4):1071–1079. https://doi.org/10.1016/j.bbrc.2006.03.231

    Article  CAS  PubMed  Google Scholar 

  18. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 51(4):2051–2059. https://doi.org/10.1167/iovs.09-4509

    Article  PubMed  PubMed Central  Google Scholar 

  19. Manuguerra-Gagne R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, Lesk MR, Roy DC (2013) Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 31(6):1136–1148. https://doi.org/10.1002/stem.1364

    Article  CAS  PubMed  Google Scholar 

  20. Emre E, Yuksel N, Duruksu G, Pirhan D, Subasi C, Erman G, Karaoz E (2015) Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 17(5):543–559. https://doi.org/10.1016/j.jcyt.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Li N, Li XR, Yuan JQ (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247(4):503–514. https://doi.org/10.1007/s00417-008-1009-y

    Article  PubMed  Google Scholar 

  22. Zaverucha-do-Valle C, Gubert F, Bargas-Rega M, Coronel JL, Mesentier-Louro LA, Mencalha A, Abdelhay E, Santiago MF et al (2011) Bone marrow mononuclear cells increase retinal ganglion cell survival and axon regeneration in the adult rat. Cell Transplant 20(3):391–406. https://doi.org/10.3727/096368910x524764

    Article  PubMed  Google Scholar 

  23. Rosado-de-Castro PH, Pimentel-Coelho PM, da Fonseca LM, de Freitas GR, Mendez-Otero R (2013) The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev 22(15):2095–2111. https://doi.org/10.1089/scd.2013.0089

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-Dos-Santos G, Gubert F, de Figueiredo AB, Torres AL, Paredes BD et al (2014) Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 9(10):e110722. https://doi.org/10.1371/journal.pone.0110722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, Gonzalez-Zamora J, Carretero-Barrio I, Pastor JC, Fernandez-Bueno I, Srivastava GK (2016) Mesenchymal stem cell therapy in retinal and optic nerve diseases: an update of clinical trials. World J Stem Cells 8(11):376–383. https://doi.org/10.4252/wjsc.v8.i11.376

    Article  PubMed  PubMed Central  Google Scholar 

  26. Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH et al (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 10(1):e0115034. https://doi.org/10.1371/journal.pone.0115034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu C, Yu J, Pan Q, Yang J, Hao G, Wang Y, Li L, Cao H (2016) Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway. Sci Rep 6:35489. https://doi.org/10.1038/srep35489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ciria M, Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, Carrero R, De La Pompa JL, Montero JA, Sepulveda P (2017) Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1alpha upstream of notch and SUMO pathways. Stem Cells Dev 26(13):973–985. https://doi.org/10.1089/scd.2016.0331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Das R, Jahr H, van Osch GJ, Farrell E (2010) The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev 16(2):159–168. https://doi.org/10.1089/ten.TEB.2009.0296

    Article  CAS  PubMed  Google Scholar 

  30. Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK (2011) Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 112(3):804–817. https://doi.org/10.1002/jcb.22961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296. https://doi.org/10.1038/nrm2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013:632972–632912. https://doi.org/10.1155/2013/632972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M (2015) The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull 5(2):141–149. https://doi.org/10.15171/apb.2015.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M, Lew H (2016) Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med 37(5):1170–1180. https://doi.org/10.3892/ijmm.2016.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park M, Kim HC, Kim O, Lew H (2018) Human placenta mesenchymal stem cells promote axon survival following optic nerve compression through activation of NF-kappaB pathway. J Tissue Eng Regen Med 12(3):e1441–e1449. https://doi.org/10.1002/term.2561

    Article  CAS  PubMed  Google Scholar 

  36. Gugliandolo A, Diomede F, Scionti D, Bramanti P, Trubiani O, Mazzon E (2019) The role of hypoxia on the neuronal differentiation of gingival mesenchymal stem cells: a transcriptional study. Cell Transplant 28(5):538–552. https://doi.org/10.1177/0963689718814470

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kwak J, Choi SJ, Oh W, Yang YS, Jeon HB, Jeon ES (2018) Cobalt chloride enhances the anti-inflammatory potency of human umbilical cord blood-derived mesenchymal stem cells through the ERK-HIF-1alpha-microRNA-146a-mediated signaling pathway. Stem Cells Int 2018:4978763–4978712. https://doi.org/10.1155/2018/4978763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng Y, Huang G, Chen F, Testroet ED, Li H, Li H, Nong T, Yang X et al (2019) Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 234:17254–17268. https://doi.org/10.1002/jcp.28342

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Huang X, Lin W, Qiu Y, He Y, Yu J, Xi Y, Ye X (2018) Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. Int J Mol Med 42(5):2538–2550. https://doi.org/10.3892/ijmm.2018.3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei ZZ, Zhu YB, Zhang JY, McCrary MR, Wang S, Zhang YB, Yu SP, Wei L (2017) Priming of the cells: hypoxic preconditioning for stem cell therapy. Chin Med J 130(19):2361–2374. https://doi.org/10.4103/0366-6999.215324

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chang HH, Hsu SP, Chien CT (2019) Intrarenal transplantation of hypoxic preconditioned mesenchymal stem cells improves glomerulonephritis through anti-oxidation, anti-ER stress, anti-inflammation, anti-apoptosis, and anti-autophagy. Antioxidants (Basel) 9(1). https://doi.org/10.3390/antiox9010002

  42. Ge Q, Zhang H, Hou J, Wan L, Cheng W, Wang X, Dong D, Chen C et al (2018) VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep 17(1):1667–1675. https://doi.org/10.3892/mmr.2017.8059

    Article  CAS  PubMed  Google Scholar 

  43. Alina K Drakon, Ilya I Eremin, Julia P Sotnikova (2017) Effectiveness and safety of adipose-derived regenerative cells for treatment of glaucomatous Neurodegeneration. U.S. National Library of medicine ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02144103?term=NCT02144103&draw=2&rank=1. Accessed 21 July 2017

  44. Steven Levy, Jeffrey Weiss, MD (2019) Stem cell ophthalmology treatment study (SCOTS). U.S. National Library of medicine ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01920867?term=NCT01920867&draw=2&rank=1. Accessed 23 October 2019

Download references

Funding

This research was supported by grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant: HI16C1559 and HI16C1090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Lew.

Ethics declarations

The animal protocol for this study was approved by the Institutional Animal Care and Use Committee of Bundang CHA Medical Center.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Park, M., Nepali, S. et al. Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model. Mol Neurobiol 57, 3362–3375 (2020). https://doi.org/10.1007/s12035-020-01965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01965-8

Keywords

Navigation