Skip to main content

Advertisement

Log in

The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is robust evidence that major depression (MDD) is accompanied by a low-grade activation of the immune-inflammatory response system, which is involved in the pathophysiology of this disorder. It is also becoming apparent that glia cells are in reciprocal communication with neurons, orchestrate various neuromodulatory, homeostatic, metabolic, and immune mechanisms, and have a crucial role in neuroinflammatory mechanisms in MDD. Those cells mediate the central nervous system (CNS) response to systemic inflammation and psychological stress, but at the same time, they may be an origin of the inflammatory response in the CNS. The sources of activation of the inflammatory response in MDD are immense; however, in recent years, it is becoming increasingly evident that the gastrointestinal tract with gut-associated lymphoid tissue (GALT) and increased intestinal permeability to bacterial LPS and food-derived antigens contribute to activation of low-grade inflammatory response with subsequent psychiatric manifestations. Furthermore, an excessive permeability to gut-derived antigenic material may lead to subsequent autoimmunities which are also known to be comorbid with MDD. In this review, we discuss fascinating interactions between the gastrointestinal tract, increased intestinal permeability, intestinal microbiota, and glia-neuron cross talk, and their roles in the pathogenesis of the inflammatory hypothesis of MDD. To emphasize those crucial intercommunications for the brain functions, we propose the term of microbiota-gut-immune-glia (MGIG) axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elsayed M, Magistretti PJ (2015) A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 9:468–468

  2. Marathe SV, D’almeida PL, Virmani G, Bathini P, Alberi L (2018) Effects of monoamines and antidepressants on astrocyte physiology: implications for monoamine hypothesis of depression. J Exp Neurosci 12:117906951878914

    Article  Google Scholar 

  3. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19(1):11–38

    Article  CAS  PubMed  Google Scholar 

  4. Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29(3):287–291

    CAS  PubMed  Google Scholar 

  5. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):676–692

    Article  CAS  Google Scholar 

  6. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721

    Article  CAS  PubMed  Google Scholar 

  7. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5–6):519–525

    Article  CAS  PubMed  Google Scholar 

  8. Shields GS, Slavich GM (2017) Lifetime stress exposure and health: a review of contemporary assessment methods and biological mechanisms. Soc Personal Psychol Compass 11(8):e12335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bailey MT, Engler H, Powell ND, Padgett DA, Sheridan JF (2007) Repeated social defeat increases the bactericidal activity of splenic macrophages through a Toll-like receptor-dependent pathway. 293(3):R1180–R1190

  10. Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima Lde S, Avellar MC, Sapolsky RM, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-κB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26(14):3813–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, Fleshner M (2005) Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience 135(4):1295–1307

    Article  CAS  PubMed  Google Scholar 

  12. Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP et al (2011) −Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31(17):6277–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rudzki L, Szulc A (2018) "Immune Gate" of psychopathology-the role of gut derived immune activation in major psychiatric disorders. Front Psychiatry 9:205–205

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maes M, Leunis JC (2008) Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from Gram-negative bacteria. Neuro Endocrinol Lett 29(6):902–910

    PubMed  Google Scholar 

  15. Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of Gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord 99(1–3):237–240

    Article  CAS  PubMed  Google Scholar 

  16. Maes M, Kubera M, Leunis JC (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from Gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29(1):117–124

    PubMed  Google Scholar 

  17. Maes M, Kubera M, Leunis JC, Berk M (2012) Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 141(1):55–62

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5):344–354

    Article  CAS  PubMed  Google Scholar 

  19. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, Raizada MK (2018) Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 67(8):1555–1557

    Article  CAS  PubMed  Google Scholar 

  20. Calarge CA, Devaraj S, Shulman RJ (2019) Gut permeability and depressive symptom severity in unmedicated adolescents. J Affect Disord 246:586–594

    Article  PubMed  Google Scholar 

  21. Ohlsson L, Gustafsson A, Lavant E, Suneson K, Brundin L, Westrin Å, Ljunggren L, Lindqvist D (2019) Leaky gut biomarkers in depression and suicidal behavior. Acta Psychiatr Scand 139(2):185–193

  22. Buscaino V (1953) Patologia extraneurale della schizophrenia. Fegato, tubo digerente, sistema reticolo-endoteliale. Acta Neurol VIII:1–60

    Google Scholar 

  23. Hemmings G, Hemmings WA (1979) The Biological basis of schizophrenia. University Park Press

  24. Baruk H (1953) Digestive and hepatointestinal etiology of the various mental diseases. Schweiz Med Wochenschr 83(38 Suppl):1517–1518

    CAS  PubMed  Google Scholar 

  25. Baruk H, Camus L (1958) Biliary & hepatic poisons in pathogenesis of schizophrenia; experimental study. Confin Neurol 18(2–4):254–263

    CAS  PubMed  Google Scholar 

  26. Baruk H (1962) P.F., Study of blood ammonia in periodic psychosis and in epileptic state. Psychotoxic valve of certain digestive disorders therapeutic trials. Ann Med Psychol (Paris) 120(2):721–726

    Google Scholar 

  27. Baruk H (1978) Psychoses from digestive origins. In: Hemmings G, Hemmings WA (eds) The Biological Basis of Schizophrenia. Springer Netherlands, Dordrecht, pp. 37–44

    Chapter  Google Scholar 

  28. Asperger H (1961) Die Psychopathologie des coeliakakranken kindes. Ann Paediatr 197:146–151

    Google Scholar 

  29. Dohan FC (1979) Schizophrenia and neuroactive peptides from food. Lancet 1(8124):1031

    Article  CAS  PubMed  Google Scholar 

  30. Kealy J, Greene C, Campbell M (2020) Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 726:133664

  31. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  33. Gareau MG (2014) Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol 817:357–371

    Article  CAS  PubMed  Google Scholar 

  34. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donato KA, Gareau MG, Wang YJJ, Sherman PM (2010) Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 156(Pt 11):3288–3297

    Article  CAS  PubMed  Google Scholar 

  36. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26(8):1155–1162

    Article  CAS  PubMed  Google Scholar 

  37. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  38. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, Koga N et al (2016) Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord 202:254–257

    Article  PubMed  Google Scholar 

  39. Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, Lv H, Guo X et al (2017) Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord 207:300–304

    Article  PubMed  Google Scholar 

  40. Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV (2018) Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res 99:50–61

    Article  PubMed  PubMed Central  Google Scholar 

  41. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M (2015) Autism spectrum disorders and intestinal microbiota. Gut Microbes 6(3):207–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187

    Article  CAS  PubMed  Google Scholar 

  44. Strati F, Cavalieri D, Albanese D, de Felice C, Donati C, Hayek J, Jousson O, Leoncini S et al (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saji N, Niida S, Murotani K, Hisada T, Tsuduki T, Sugimoto T, Kimura A, Toba K et al (2019) Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci Rep 9(1):1008

  46. Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR (2016) Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 4(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  47. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P, Windey K, Tremaroli V et al (2014) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 111(42):E4485–E4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    Article  CAS  PubMed  Google Scholar 

  50. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 48:258–264

    Article  PubMed  Google Scholar 

  51. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, Memarzadeh MR, Asemi Z et al (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32(3):315–320

    Article  CAS  PubMed  Google Scholar 

  52. Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M et al (2016) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19(9):387–395

    Article  CAS  PubMed  Google Scholar 

  53. McKean J, Naug H, Nikbakht E, Amiet B, Colson N (2016) Probiotics and Subclinical Psychological Symptoms in Healthy Participants: A Systematic Review and Meta-Analysis. J Altern Complement Med 23(4):249–258

  54. Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61(3):355–361

    Article  CAS  PubMed  Google Scholar 

  55. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease: A Randomized, Double-Blind and Controlled Trial. Front Aging Neurosci 8(256)

  56. Huang R, Wang K, Hu J (2016) Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 8(8):483

  57. Yong-Ku K, Cheolmin S (2018) The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Curr Neuropharmacol 16(5):559–573

  58. Lawrence K, Hyde J (2017) Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 12(6):e0179017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Misra S, Mohanty D (2019) Psychobiotics: A new approach for treating mental illness? Crit Rev Food Sci Nutr 59(8):1230–1236

  60. Ng QX, Peters C, Ho CYX, Lim DY, Yeo W-S (2017) A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord 228:13–19

    Article  PubMed  Google Scholar 

  61. Rios AC, Peters C, Ho CYX, Lim DY, Yeo W-S (2017) Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Rev Neurosci 28(7):739–749

    Article  PubMed  Google Scholar 

  62. Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C (2017) A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry 51(8):810–821

    Article  PubMed  PubMed Central  Google Scholar 

  63. Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murphy R, Kang J, Rowden J et al (2017) Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine 24:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann General Psychiatry 16:14

    Article  Google Scholar 

  65. Wang Q, Jie W, Liu JH, Yang JM, Gao TM (2017) An astroglial basis of major depressive disorder? An overview. Glia 65(8):1227–1250

  66. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209(12):2304–2311

    Article  CAS  PubMed  Google Scholar 

  67. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72(1):335–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45(2):242–248

    Article  PubMed  Google Scholar 

  69. Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103

    Article  PubMed  Google Scholar 

  71. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620

    Article  CAS  PubMed  Google Scholar 

  72. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci 106(6):1977–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Investig 122(7):2454–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park JY, Lee KH, Park HS, Choi SJ (2017) LPS sensing mechanism of human astrocytes: evidence of functional TLR4 expression and requirement of soluble CD14. J Bacteriol Virol 47(4):189

    Article  CAS  Google Scholar 

  75. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Ni J, Zhai L, Gao C, Xie L, Zhao L, Yin X (2019) Inhibition of activated astrocyte ameliorates lipopolysaccharide- induced depressive-like behaviors. J Affect Disord 242:52–59

    Article  CAS  PubMed  Google Scholar 

  77. Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y et al (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215(5):719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of Toll-like receptor 4 expression. Cell Physiol Biochem 38(2):714–725

    Article  CAS  PubMed  Google Scholar 

  79. Mayhew J, Beart PM, Walker FR (2015) Astrocyte and microglial control of glutamatergic signalling: a primer on understanding the disruptive role of chronic stress. J Neuroendocrinol 27(6):498–506

    Article  CAS  PubMed  Google Scholar 

  80. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  PubMed  Google Scholar 

  81. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36

    Article  PubMed  Google Scholar 

  82. Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55(5):585–595

    Article  CAS  PubMed  Google Scholar 

  83. Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonté B, Turecki G, Mechawar N (2011) Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology 36(13):2650–2658

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658

    Article  CAS  PubMed  Google Scholar 

  85. Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28(11):571–573

    Article  CAS  PubMed  Google Scholar 

  86. Tavares RG, Tasca CI, Santos CES, Alves ĹB, Porciúncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627

    Article  CAS  PubMed  Google Scholar 

  87. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci 109(4):E197–E205

    Article  CAS  PubMed  Google Scholar 

  88. Wohleb ES (2016) Neuron–Microglia Interactions in Mental Health Disorders: “For Better, and For Worse”. Front Immunol 7(544)

  89. Liu GJ, Nagarajah R, Banati RB, Bennett MR (2009) Glutamate induces directed chemotaxis of microglia. Eur J Neurosci 29(6):1108–1118

    Article  PubMed  Google Scholar 

  90. Hristovska I, Pascual O (2016) Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect. Front Integr Neurosci 9(73)

  91. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59

    Article  CAS  PubMed  Google Scholar 

  92. Ramirez K, Shea DT, McKim DB, Reader BF, Sheridan JF (2015) Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance. Brain Behav Immun 46:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 26(3):469–479

    Article  CAS  PubMed  Google Scholar 

  94. Dhami KS, Churchward MA, Baker GB, Todd KG (2013) Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult. Mol Cell Neurosci 56:365–374

    Article  CAS  PubMed  Google Scholar 

  95. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rosenblat JD, McIntyre RS (2018) Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J Affect Disord 227:219–225

    Article  CAS  PubMed  Google Scholar 

  97. Clemens V, Regen F, le Bret N, Heuser I, Hellmann-Regen J (2018) Anti-inflammatory effects of minocycline are mediated by retinoid signaling. BMC Neurosci 19(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sokolov BP (2007) Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol 10(04):547

    Article  CAS  PubMed  Google Scholar 

  99. Tham MW, Woon PS, Sum MY, Lee TS, Sim K (2011) White matter abnormalities in major depression: evidence from post-mortem, neuroimaging and genetic studies. J Affect Disord 132(1–2):26–36

    Article  PubMed  Google Scholar 

  100. Sacchet MD, Gotlib IH (2017) Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Sci Rep 7(1):2200

  101. Domingues HS, Portugal CC, Socodato R, Relvas JB (2016) Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 4:71–71

  102. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141(3):302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pang Y, Cai Z, Rhodes PG (2003) Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140(2):205–214

    Article  CAS  PubMed  Google Scholar 

  104. Chew LJ, Fusar-Poli P, Schmitz T (2013) Oligodendroglial Alterations and the Role of Microglia in White Matter Injury: Relevance to Schizophrenia. Dev Neurosci 35(2-3):102–129

  105. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–20 quiz 21–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim Rasoel S, Tόth J et al (2014) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63(8):1293–1299

    Article  CAS  PubMed  Google Scholar 

  108. Soderholm JD, Perdue MH (2001) Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 280(1):G7–g13

    Article  CAS  PubMed  Google Scholar 

  109. Velin AK, Ericson AC, Braaf Y, Wallon C, Söderholm JD (2004) Increased antigen and bacterial uptake in follicle associated epithelium induced by chronic psychological stress in rats. Gut 53(4):494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang P-C, Jury J, Söderholm JD, Sherman PM, McKay DM, Perdue MH (2006) Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am J Pathol 168(1):104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferrier L (2008) Significance of increased human colonic permeability in response to corticotrophin-releasing hormone (CRH). Gut 57(1):7–9

    Article  CAS  PubMed  Google Scholar 

  112. Lambert GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87(14 Suppl):E101–E108

    Article  CAS  PubMed  Google Scholar 

  113. Beaurepaire C, Smyth D, McKay DM (2009) Interferon-gamma regulation of intestinal epithelial permeability. J Interf Cytokine Res 29(3):133–144

    Article  CAS  Google Scholar 

  114. Schmitz H, Fromm M, Bentzel CJ, Scholz P, Detjen K, Mankertz J, Bode H, Epple HJ et al (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci 112(Pt 1):137–146

    Article  CAS  PubMed  Google Scholar 

  115. Ye D, Ma I, Ma TY (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 290(3):G496–G504

    Article  CAS  PubMed  Google Scholar 

  116. Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178(7):4641–4649

    Article  CAS  PubMed  Google Scholar 

  117. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286(3):G367–G376

    Article  CAS  PubMed  Google Scholar 

  118. Chavez AM, Menconi MJ, Hodin RA, Fink MP (1999) Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Crit Care Med 27(10):2246–2251

    Article  CAS  PubMed  Google Scholar 

  119. Yamaguchi N, Sugita R, Miki A, Takemura N, Kawabata J, Watanabe J, Sonoyama K (2006) Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 55(7):954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Severance EG, Kannan G, Gressitt KL, Dickerson FB, Pletnikov MV, Yolken RH (2012) Antibodies to food antigens: translational research in psychiatric disorders. Neurol Psychiatry Brain Res 18(2):87–88

    Article  Google Scholar 

  121. Fukui H (2016) Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis 1(3):135–145

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy P, Grose RH, Cummins AG (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48(2):206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bjarnason I, Peters TJ, Wise RJ (1984) The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1(8370):179–182

    Article  CAS  PubMed  Google Scholar 

  124. Bode C, Bode JC (2003) Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol 17(4):575–592

    Article  CAS  PubMed  Google Scholar 

  125. Leclercq S, Cani PD, Neyrinck AM, Stärkel P, Jamar F, Mikolajczak M, Delzenne NM, de Timary P (2012) Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun 26(6):911–918

    Article  CAS  PubMed  Google Scholar 

  126. Pan P, Song Y, du X, Bai L, Hua X, Xiao Y, Yu X (2019) Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 40(6):1105–1110

    Article  PubMed  Google Scholar 

  127. Bansal V, Costantini T, Kroll L, Peterson C, Loomis W, Eliceiri B, Baird A, Wolf P et al (2009) Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma 26(8):1353–1359

  128. Lambert GP, Gisolfi CV, Berg DJ, Moseley PL, Oberley LW, Kregel KC (2002) Selected contribution: hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. J Appl Physiol (1985) 92(4):1750–1761 discussion 1749

    Article  CAS  Google Scholar 

  129. Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 14(6):479–489

    Article  CAS  PubMed  Google Scholar 

  130. Csáki KF (2011) Synthetic surfactant food additives can cause intestinal barrier dysfunction. Med Hypotheses 76(5):676–681

    Article  PubMed  CAS  Google Scholar 

  131. Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-Bonin M (2018) Mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms 6(2):53

    Article  PubMed Central  CAS  Google Scholar 

  132. Samsel A, Seneff S (2013) Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol 6(4):159–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Joly Condette C, Khorsi-Cauet H, Morlière P, Zabijak L, Reygner J, Bach V, Gay-Quéheillard J (2014) Increased Gut Permeability and Bacterial Translocation after Chronic Chlorpyrifos Exposure in Rats. PLoS One 9(7):e102217

  134. Defois C, Ratel J, Garrait G, Denis S, Le Goff O, Talvas J, Mosoni P, Engel E et al (2018) Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep 8(1):11006

  135. Lambert GP (2008) Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci 53:61–73

    Article  PubMed  Google Scholar 

  136. Pals KL, Chang RT, Ryan AJ, Gisolfi CV (1997) Effect of running intensity on intestinal permeability. J Appl Physiol (1985) 82(2):571–576

    Article  CAS  Google Scholar 

  137. Bjarnason I, Williams P, Smethurst P, Peters TJ, Levi AJ (1986) Effect of non-steroidal anti-inflammatory drugs and prostaglandins on the permeability of the human small intestine. Gut 27(11):1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Smetanka RD, Lambert CP, Murray R, Eddy D, Horn M, Gisolfi CV (1999) Intestinal permeability in runners in the 1996 Chicago marathon. Int J Sport Nutr 9(4):426–433

    Article  CAS  PubMed  Google Scholar 

  139. van Ampting MT, Schonewille AJ, Vink C, Brummer RJM, van der Meer R, Bovee-Oudenhoven IMJ (2010) Damage to the intestinal epithelial barrier by antibiotic pretreatment of salmonella-infected rats is lessened by dietary calcium or tannic acid. J Nutr 140(12):2167–2172

    Article  PubMed  CAS  Google Scholar 

  140. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502(7469):96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tulstrup MV-L, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI (2015) Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS One 10(12):e0144854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22(6):458–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perrin AJ, Horowitz MA, Roelofs J, Zunszain PA, Pariante CM (2019) Glucocorticoid Resistance: Is It a Requisite for Increased Cytokine Production in Depression? A Systematic Review and Meta-Analysis. Front Psych 10:423–423

  144. Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY (2007) Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292(2):G590–G598

  145. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC (2001) Acute stress increases permeability of the blood–brainbarrier through activation of brain mast cells. Brain Res 888(1):117–127

  146. Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY (2001) Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol 50(9):812–821

    Article  CAS  PubMed  Google Scholar 

  147. Yang GY, Gong C, Qin Z, Liu XH, Lorris Betz A (1999) Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res 69(1):135–143

    Article  CAS  PubMed  Google Scholar 

  148. Wang W, Lv S, Zhou Y, Fu J, Li C, Liu P (2011) Tumor necrosis factor-alpha affects blood-brain barrier permeability in acetaminophen-induced acute liver failure. Eur J Gastroenterol Hepatol 23(7):552–558

    Article  CAS  PubMed  Google Scholar 

  149. Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 190(2):446–455

    Article  CAS  PubMed  Google Scholar 

  150. Enciu AM, Gherghiceanu M, Popescu BO (2013) Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxidative Med Cell Longev 2013:297512

    Article  Google Scholar 

  151. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox Res 36(2):306–322

    Article  CAS  PubMed  Google Scholar 

  152. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172(3):500–516.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vaure C, Liu Y (2014) A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Front Immunol 5(316)

  154. Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151

    Article  CAS  PubMed  Google Scholar 

  155. O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522

    Article  PubMed  CAS  Google Scholar 

  156. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmächer T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58(5):445–452

    Article  CAS  PubMed  Google Scholar 

  157. Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E et al (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6(12):e28330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Parrott JM, Redus L, O’Connor JC (2016) Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation 13(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Anderson G, Maes M (2017) Interactions of tryptophan and its catabolites with melatonin and the alpha 7 nicotinic receptor in central nervous system and psychiatric disorders: role of the aryl hydrocarbon receptor and direct mitochondria regulation. Int J Tryptophan Res 10:1178646917691738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sommansson A, Nylander O, Sjöblom M (2013) Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor–dependent pathway in rats in vivo. J Pineal Res 54(3):282–291

    Article  CAS  PubMed  Google Scholar 

  161. Swanson GR, Gorenz A, Shaikh M, Desai V, Forsyth C, Fogg L, Burgess HJ, Keshavarzian A (2015) Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 308(12):G1004–G1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D et al (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3(6):e2516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90

  164. Frank MG, Thompson BM, Watkins LR, Maier SF (2012) Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 26(2):337–345

    Article  CAS  PubMed  Google Scholar 

  165. Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Sparkman NL, Johnson RW (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 15(4–6):323–330

    Article  CAS  PubMed  Google Scholar 

  167. Bombardier CH (2010) Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA 303(19):1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP (2014) Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry 76(7):575–584

    Article  CAS  PubMed  Google Scholar 

  169. Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, Elicieri B, Baird A et al (2010) Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma 68(5):1059–1064

    PubMed  PubMed Central  Google Scholar 

  170. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  171. Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Besedovsky H, Meneses D, Fleury A et al (2016) Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm 13(1):33

    Article  CAS  Google Scholar 

  172. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859

    Article  CAS  PubMed  Google Scholar 

  173. McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216(Pt 1):84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kalkman HO, Feuerbach D (2016) Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73(13):2511–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, Reimherr FW, Schwartz TL et al (2017) A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality. Am J Psychiatry 174(7):640–648

    Article  PubMed  Google Scholar 

  176. Bottomley JM, LeReun C, Diamantopoulos A, Mitchell S, Gaynes BN (2019) Vagus nerve stimulation (VNS) therapy in patients with treatment resistant depression: A systematic review and meta-analysis. Compr Psychiatry 98:152156

    Article  PubMed  Google Scholar 

  177. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD (2017) Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65(9):1504–1520

    Article  PubMed  PubMed Central  Google Scholar 

  178. Albert P (2015) Why is depression more prevalent in women? J Psychiatry Neurosci 40(4):219–221

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hung Y-Y, Huang K-W, Kang H-Y, Huang GY-L, Huang T-L (2016) Antidepressants normalize elevated Toll-like receptor profile in major depressive disorder. Psychopharmacology 233(9):1707–1714

  180. Kéri S, Szabó C, Kelemen O (2014) Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav Immun 40:235–243

  181. Fasano A (2012) Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol 42(1):71–78

    Article  CAS  PubMed  Google Scholar 

  182. Liu Z, Li N, Neu J (2005) Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 94(4):386–393

    Article  CAS  PubMed  Google Scholar 

  183. Addolorato G, Marsigli L, Capristo E, Caputo F, Dall'Aglio C, Baudanza P (1998) Anxiety and depression: a common feature of health care seeking patients with irritable bowel syndrome and food allergy. Hepatogastroenterology 45(23):1559–1564

    CAS  PubMed  Google Scholar 

  184. Sturgeon C, Fasano A (2016) Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4(4):e1251384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Rudzki L, Frank M, Szulc A, Gałęcka M, Szachta P, Barwinek D (2012) Od jelit do depresji – rola zaburzeń ciągłości bariery jelitowej i następcza aktywacja układu immunologicznego w zapalnej hipotezie depresji (Polish). From gut to depression – the role of intestinal barrier discontinuity and activation of the immune system in the depression inflammatory hypothesis. Neuropsychiatria i Neuropsychologia/Neuropsychiatry and. Neuropsychology 7(2):76–84

    Google Scholar 

  186. Rudzki L, Pawlak D, Pawlak K, Waszkiewicz N, Małus A, Konarzewska B, Gałęcka M, Bartnicka A et al (2017) Immune suppression of IgG response against dairy proteins in major depression. BMC Psychiatry 17(1):268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Karakula-Juchnowicz H, Gałęcka M, Rog J, Bartnicka A, Łukaszewicz Z, Krukow P, Morylowska-Topolska J, Skonieczna-Zydecka K et al (2018) The food-specific serum IgG reactivity in major depressive disorder patients, irritable bowel syndrome patients and healthy controls. Nutrients 10(5):548

    Article  PubMed Central  CAS  Google Scholar 

  188. Dickerson F, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, Schweinfurth L, Stallings C et al (2017) The association between immune markers and recent suicide attempts in patients with serious mental illness: a pilot study. Psychiatry Res 255:8–12

    Article  PubMed  Google Scholar 

  189. Severance EG, Gressitt KL, Yang S, Stallings CR, Origoni AE, Vaughan C, Khushalani S, Alaedini A et al (2014) Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. Bipolar Disord 16(3):230–240

    Article  CAS  PubMed  Google Scholar 

  190. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1)

  191. Reding M, Haycox J, Blass J (1985) Depression in patients referred to a dementia clinic: a three-year prospective study. Arch Neurol 42(9):894–896

    Article  CAS  PubMed  Google Scholar 

  192. Byers AL, Yaffe K (2011) Depression and risk of developing dementia. Nat Rev Neurol 7(6):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Leonard BE (2007) Inflammation, depression and dementia: are they connected? Neurochem Res 32(10):1749–1756

    Article  CAS  PubMed  Google Scholar 

  194. Costantini E, D’Angelo C, Reale M (2018) The Role of immunosenescence in neurodegenerative diseases. Mediat Inflamm 2018:6039171

    Google Scholar 

  195. Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A et al (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging 4(4):267–285

    Article  PubMed  PubMed Central  Google Scholar 

  196. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J (2019) The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 56(3):1841–1851

    Article  CAS  PubMed  Google Scholar 

  197. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, Fuller J, Ibbett P et al (2016) Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One 11(3):e0151081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Gomes C, Martinho FC, Barbosa DS, Antunes LS, Póvoa HCC, Baltus THL, Morelli NR, Vargas HO et al (2018) Increased root canal endotoxin levels are associated with chronic apical periodontitis, increased oxidative and nitrosative stress, major depression, severity of depression, and a lowered quality of Life. Mol Neurobiol 55(4):2814–2827

    Article  CAS  PubMed  Google Scholar 

  200. Marschall J, Zhang L, Foxman B, Warren DK, Henderson JP (2012) Both host and pathogen factors predispose to Escherichia coli urinary-source bacteremia in hospitalized patients. Clin Infec Dis 54(12):1692–1698

  201. Chae JH, Miller BJ (2015) Beyond urinary tract infections (UTIs) and delirium: a systematic review of UTIs and neuropsychiatric disorders. J Psychiatr Pract 21(6):402–411

    Article  PubMed  Google Scholar 

  202. Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR (2016) Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 87(22):2324–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vargas-Caraveo A, Sayd A, Maus SR, Caso JR, Madrigal JLM, García-Bueno B, Leza JC (2017) Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 7(1):13113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Zhao Y, Jaber V, Lukiw WJ (2017) Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 7:318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Som Chaudhury S, Mukhopadhyay CD (2018) Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases. Int J Neurosci 128(5):449–463

    Article  CAS  PubMed  Google Scholar 

  206. Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13(12):e1006654–e1006654

  207. Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G et al (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8(340):340ra72

    Article  PubMed  CAS  Google Scholar 

  208. Fernandez CG, Hamby ME, McReynolds ML, Ray WJ (2019) The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci 11:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Benros ME, Waltoft BL, Nordentoft M, Østergaard SD, Eaton WW, Krogh J, Mortensen PB (2013) Autoimmune diseases and severe infections as risk factors for mood disorders. JAMA Psychiatry 70(8):812–820

    Article  PubMed  Google Scholar 

  210. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E, Mortensen PB (2006) Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry 163(3):521–528

    Article  PubMed  Google Scholar 

  211. Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM et al (2018) Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 9:432–432

  212. Vojdani A, Vojdani E (2019) Food-associated autoimmunities: when food breaks your immune system. Autoimmunity, vol 1

    Google Scholar 

  213. Guggenmos J, Schubart AS, Ogg S, Andersson M, Olsson T, Mather IH, Linington C (2003) Antibody cross-reactivity between myelin oligodendrocyte glycoprotein and the milk protein butyrophilin in multiple sclerosis. J Immunol 172(1):661–668

    Article  Google Scholar 

  214. Laske C, Zank M, Klein R, Stransky E, Batra A, Buchkremer G, Schott K (2008) Autoantibody reactivity in serum of patients with major depression, schizophrenia and healthy controls. Psychiatry Res 158(1):83–86

    Article  CAS  PubMed  Google Scholar 

  215. Margari F, Petruzzelli MG, Mianulli R, Campa MG, Pastore A, Tampoia M (2015) Circulating anti-brain autoantibodies in schizophrenia and mood disorders. Psychiatry Res 230(2):704–708

    Article  CAS  PubMed  Google Scholar 

  216. Iseme RA, McEvoy M, Kelly B, Agnew L, Attia J, Walker FR (2014) Autoantibodies and depression: evidence for a causal link? Neurosci Biobehav Rev 40:62–79

    Article  CAS  PubMed  Google Scholar 

  217. Maes M, Ringel K, Kubera M, Berk M, Rybakowski J (2012) Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 136(3):386–392

    Article  CAS  PubMed  Google Scholar 

  218. Katzav A, Solodeev I, Brodsky O, Chapman J, Pick CG, Blank M, Zhang W, Reichlin M et al (2007) Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum 56(3):938–948

    Article  CAS  PubMed  Google Scholar 

  219. Lambert J, Vojdani A (2017) Correlation of Tissue Antibodies and Food Immune Reactivity in Randomly Selected Patient Specimens. J Clin Cell Immunol 8(5):1–10

  220. Vojdani A, Kharrazian D, Mukherjee P (2013) The Prevalence of Antibodies against Wheat and Milk Proteins in Blood Donors and Their Contribution to Neuroimmune Reactivities. Nutrients 6(1):15–36

  221. Antibody Cross-Reactivity between Myelin Oligodendrocyte Glycoprotein and the Milk Protein Butyrophilin in Multiple Sclerosis. J Immunol 172(1):661–668

  222. Vojdani A, O'Bryan T, Green JA, Mccandless J, Woeller KN, Vojdani E, Nourian AA, Cooper EL (2004) Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci 7(3):151–161

    Article  CAS  PubMed  Google Scholar 

  223. Stefferl A, Schubart A, Storch M, Amini A, Mather I, Lassmann H, Linington C (2000) Butyrophilin, a Milk Protein, Modulates the Encephalitogenic T Cell Response to Myelin Oligodendrocyte Glycoprotein in Experimental Autoimmune Encephalomyelitis. J Immunol 165(5):2859–2865

  224. Ching KH, Burbelo PD, Carlson PJ, Drevets WC, Iadarola MJ (2010) High levels of anti-GAD65 and anti-Ro52 autoantibodies in a patient with major depressive disorder showing psychomotor disturbance. J Neuroimmunol 222(1–2):87–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Karolewicz B, Maciag D, O'Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G (2010) Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol 13(4):411–420

  226. Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165

    Article  PubMed  Google Scholar 

  227. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38):16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lambert J, Mejia S, Vojdani A (2019) Plant and human aquaporins: pathogenesis from gut to brain. Immunol Res 67(1):12–20

    Article  CAS  PubMed  Google Scholar 

  229. Vojdani A, Mukherjee PS, Berookhim J, Kharrazian D (2015) Detection of Antibodies against Human and Plant Aquaporins in Patients with Multiple Sclerosis. Autoimmune Dis 2015:905208

  230. Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, Vincent A, Wildemann B (2008) Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 4(4):202–214

    Article  CAS  PubMed  Google Scholar 

  231. Makinodan M, Rosen KM, Ito S, Corfas G (2012) A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science (New York, NY) 337(6100):1357–1360

  232. McDonald JW, Levine JM, Qu Y (1998) Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport 9(12):2757–2762

    Article  CAS  PubMed  Google Scholar 

  233. Werner P, Pitt D, Raine CS (2000) Glutamate excitotoxicity — a mechanism for axonal damage and oligodendrocyte death in multiple sclerosis? in Advances in Research on Neurodegeneration. Springer Vienna, Vienna

    Google Scholar 

  234. Arinuma Y, Yanagida T, Hirohata S (2008) Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 58(4):1130–1135

    Article  CAS  PubMed  Google Scholar 

  235. Lapteva L, Nowak M, Yarboro CH, Takada K, Roebuck-Spencer T, Weickert T, Bleiberg J, Rosenstein D et al (2006) Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum 54(8):2505–2514

    Article  CAS  PubMed  Google Scholar 

  236. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI (2005) Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol 12(5):392–398

    Article  CAS  PubMed  Google Scholar 

  237. Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, Sørensen E, Nielsen KR et al (2019) Large-scale study of toxoplasma and cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun 79:152–158

    Article  PubMed  Google Scholar 

  238. Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16(2):105–115

  239. Lerner A, Aminov R, Matthias T (2016) Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins. Front Microbiol 7:84–84

  240. Liang S, Wu X, Jin F (2018) Gut-brain psychology: rethinking psychology from the microbiota-gut-brain axis. Front Integr Neurosci 12:33

    Article  PubMed  PubMed Central  Google Scholar 

  241. Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yan F, Polk DB (2010) Disruption of NF-kappaB signalling by ancient microbial molecules: novel therapies of the future? Gut 59(4):421–426

    Article  CAS  PubMed  Google Scholar 

  243. Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16(33):4145–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    Article  PubMed  Google Scholar 

  245. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170(4):1179–1188

    Article  CAS  PubMed  Google Scholar 

  246. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, Schuetz B, Greilberger JF (2012) Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr 9:45–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819

    Article  CAS  PubMed  Google Scholar 

  248. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, el Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, Clarke G, Cryan JF (2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 6:e774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S (2019) Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 16(1):165

  253. Quintana FJ, Sherr DH (2013) Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 65(4):1148–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lee HU, McPherson ZE, Tan B, Korecka A, Pettersson S (2017) Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J Mol Med 95(1):29–39

    Article  CAS  PubMed  Google Scholar 

  255. Korecka A, Dona A, Lahiri S, Tett AJ, al-Asmakh M, Braniste V, D’Arienzo R, Abbaspour A et al (2016) Bidirectional communication between the aryl hydrocarbon receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes 2(1):16014

    Article  PubMed  PubMed Central  Google Scholar 

  256. Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, de Lima KA, Gutiérrez-Vázquez C et al (2018) Microglial control of astrocytes in response to microbial metabolites. Nature 557(7707):724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zelante T, Iannitti RG, Cunha C, de Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385

    Article  CAS  PubMed  Google Scholar 

  258. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao C-C, Patel B et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597

  259. Lee YH, Lin CH, Hsu PC, Sun YY, Huang YJ, Zhuo JH, Wang CY, Gan YL et al (2015) Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia. Glia 63(7):1138–1154

    Article  PubMed  Google Scholar 

  260. Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, Szulc A (2018) Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100:213–222

    Article  PubMed  CAS  Google Scholar 

  261. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2012) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666

    Article  PubMed  CAS  Google Scholar 

  262. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112.e1

    Article  CAS  PubMed  Google Scholar 

  264. Valladares R, Bojilova L, Potts AH, Cameron E, Gardner C, Lorca G, Gonzalez CF (2013) Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J 27(4):1711–1720

    Article  CAS  PubMed  Google Scholar 

  265. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(Suppl 1):S43–S45

    Article  PubMed  Google Scholar 

  266. Gu Q, Li P (2016) Biosynthesis of vitamins by probiotic bacteria, in Probiotics and Prebiotics in Human Nutrition and Health, V. Rao and L.G. Rao, Editors. InTech: Rijeka p Ch 07.

  267. Ueland PM, McCann A, Midttun Ø, Ulvik A (2017) Inflammation, vitamin B6 and related pathways. Mol Asp Med 53:10–27

    Article  CAS  Google Scholar 

  268. Oxenkrug G, Ratner R, Summergrad P (2013) Kynurenines and Vitamin B6: Link Between Diabetes and Depression. J Bioinform Diab 1(1):1–10

  269. Hankes LV, Leklem JE, Brown RR, Mekel RCPM (1971) Tryptophan metabolism in patients with pellagra: problem of vitamin B 6 enzyme activity and feedback control of tryptophan pyrrolase enzyme. Am J Clin Nutr 24(6):730–739

    Article  CAS  PubMed  Google Scholar 

  270. Leklem JE (1971) Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am J Clin Nutr 24(6):659–672

    Article  CAS  PubMed  Google Scholar 

  271. Theofylaktopoulou D, Ulvik A, Midttun Ø, Ueland PM, Vollset SE, Nygård O, Hustad S, Tell GS et al (2014) Vitamins B2 and B6 as determinants of kynurenines and related markers of interferon-gamma-mediated immune activation in the community-based Hordaland Health Study. Br J Nutr 112(7):1065–1072

    Article  CAS  PubMed  Google Scholar 

  272. Paul L, Ueland PM, Selhub J (2013) Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr Rev 71(4):239–244

    Article  PubMed  Google Scholar 

  273. Li G, Young KD (2013) Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159(Pt 2):402–410

    Article  CAS  PubMed  Google Scholar 

  274. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    Article  PubMed  CAS  Google Scholar 

  275. Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD (2019) Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 317(1):G17–G39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O'Reilly SL, Nicholson GC, Kotowicz MA et al (2010) Association of and traditional diets with depression and anxiety in women. Am J Psychiatry 167(3):305–311

    Article  PubMed  Google Scholar 

  277. Knüppel A, Shipley MJ, Llewellyn CH, Brunner EJ (2017) Sugar intake from sweet food and beverages, common mental disorder and depression: prospective findings from the Whitehall II study. Sci Rep 7(1):6287

  278. Boden JM, Fergusson DM (2011) Alcohol and depression. Addiction 106(5):906–914

    Article  PubMed  Google Scholar 

  279. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, Zitman FG (2010) Overweight, obesity, and depression. Arch Gen Psychiatry 67(3):220–229

    Article  PubMed  Google Scholar 

  280. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26(1):5–11

    Article  PubMed  Google Scholar 

  281. Genser L, Aguanno D, Soula HA, Dong L, Trystram L, Assmann K, Salem JE, Vaillant JC et al (2018) Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol 246(2):217–230

    Article  CAS  PubMed  Google Scholar 

  282. Gustafson DR, Karlsson C, Skoog I, Rosengren L, Lissner L, Blennow K (2007) Mid-life adiposity factors relate to blood-brain barrier integrity in late life. J Intern Med 262(6):643–650

  283. Kim K-A, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Bocarsly ME, Fasolino M, Kane GA, Lamarca EA, Kirschen GW, Karatsoreos IN, McEwen BS, Gould E (2015) Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci 112(51):15731

  285. Hao S, Dey A, Yu X, Stranahan AM (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51:230–239

    Article  PubMed  Google Scholar 

  286. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A et al (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15(1):11

  287. Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T et al (2017) Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 7(1):11955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Yin Z, Raj DD, Schaafsma W, Van Der Heijden RA, Kooistra SM, Reijne AC, Zhang X, Moser J et al (2018) Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging. Front Mol Neurosci 11(65)

  289. D’Mello C, Ronaghan N, Zaheer R, Dicay M, Le T, MacNaughton WK, Surrette MG, Swain MG (2015) Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci 35(30):10821–10830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35(4):298–306

    Article  CAS  PubMed  Google Scholar 

  291. Smith RS (1997) Cytokines & Depression. How your immune system causes depression. Online document. http://www.cytokines-and-depression.com/

  292. Jacka FN (2017) Nutritional psychiatry: where to next? EBioMedicine 17:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  293. Jacka FN, Cherbuin N, Anstey KJ, Sachdev P, Butterworth P (2015) Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med 13(1):215

  294. Graham LC, Harder JM, Soto I, De Vries WN, John SWM, Howell GR (2016) Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease. Sci Rep 6(1):21568

  295. Sánchez-Villegas A, Martínez-González MA, Estruch R, Salas-Salvadó J, Corella D, Covas MI, Arós F, Romaguera D et al (2013) Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Med 11(1):208

    Article  PubMed  PubMed Central  Google Scholar 

  296. Zhang Y, Liu C, Zhao Y, Zhang X, Li B, Cui R (2015) The effects of calorie restriction in depression and potential mechanisms. Curr Neuropharmacol 13(4):536–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li B (2018) Effect of caloric restriction on depression. J Cell Mol Med 22(5):2528–2535

    Article  PubMed  PubMed Central  Google Scholar 

  298. Vaghef-Mehrabany E, Ranjbar F, Asghari-Jafarabadi M, Hosseinpour-Arjmand S, Ebrahimi-Mameghani M (2019) Calorie restriction in combination with prebiotic supplementation in obese women with depression: effects on metabolic and clinical response. Nutr Neurosci:1–15

  299. Tolkien K, Bradburn S, Murgatroyd C (2019) An anti-inflammatory diet as a potential intervention for depressive disorders: a systematic review and meta-analysis. Clin Nutr 38(5):2045–2052

    Article  CAS  PubMed  Google Scholar 

  300. Kelly R (2019) How I overcame depression with anti-inflammatory food (and why readers like my story). Brain Behav Immun 77:3–4

    Article  PubMed  Google Scholar 

  301. Jacka FN, O’Neil A, Opie R, Itsiopoulos C, Cotton S, Mohebbi M, Castle D, Dash S et al (2017) A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med 15(1):23

  302. Molendijk M, Molero P, Ortuño Sánchez-Pedreño F, van der Does W, Angel Martínez-González M (2018) Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies. J Affect Disord 226:346–354

    Article  PubMed  Google Scholar 

  303. Alpay K, Ertaş M, Orhan EK, Üstay DK, Lieners C, Baykan B (2010) Diet restriction in migraine, based on IgG against foods: a clinical double-blind, randomised, cross-over trial. Cephalalgia 30(7):829–837

    Article  PubMed  PubMed Central  Google Scholar 

  304. Drisko J, Bischoff B, Hall M, McCallum R (2006) Treating irritable bowel syndrome with a food elimination diet followed by food challenge and probiotics. J Am Coll Nutr 25(6):514–522

    Article  PubMed  Google Scholar 

  305. Mitchell N, Hewitt CE, Jayakody S, Islam M, Adamson J, Watt I, Torgerson DJ (2011) Randomised controlled trial of food elimination diet based on IgG antibodies for the prevention of migraine like headaches. Nutr J 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  306. Aydinlar EI, Dikmen PY, Tiftikci A, Saruc M, Aksu M, Gunsoy HG, Tozun N (2013) IgG-based elimination diet in migraine plus irritable bowel syndrome. Headache 53(3):514–525

    Article  PubMed  Google Scholar 

  307. Atkinson W, Sheldon TA, Shaath N, Whorwell PJ (2004) Food elimination based on IgG antibodies in irritable bowel syndrome: a randomised controlled trial. Gut 53(10):1459–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Bentz S, Hausmann M, Piberger H, Kellermeier S, Paul S, Held L, Falk W, Obermeier F et al (2010) Clinical relevance of IgG antibodies against food antigens in Crohn’s disease: a double-blind cross-over diet intervention study. Digestion 81(4):252–264

    Article  CAS  PubMed  Google Scholar 

  309. Sturniolo GC, di Leo V, Ferronato A, D’Odorico A, D’Incà R (2001) Zinc supplementation tightens "leaky gut" in Crohn’s disease. Inflamm Bowel Dis 7(2):94–98

    Article  CAS  PubMed  Google Scholar 

  310. Zhang B, Guo Y (2009) Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr 102(5):687–693

    Article  CAS  PubMed  Google Scholar 

  311. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD (2014) Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord 167:368–375

    Article  CAS  PubMed  Google Scholar 

  312. Ranjbar E, Kasaei MS, Mohammad-Shirazi M, Nasrollahzadeh J, Rashidkhani B, Shams J, Mostafavi SA, Mohammadi MR (2013) Effects of zinc supplementation in patients with major depression: a randomized clinical trial. Iran J Psychiatry 8(2):73–79

    PubMed  PubMed Central  Google Scholar 

  313. Mei X, Xu D, Xu S, Zheng Y, Xu S (2011) Gastroprotective and antidepressant effects of a new zinc(II)-curcumin complex in rodent models of gastric ulcer and depression induced by stresses. Pharmacol Biochem Behav 99(1):66–74

  314. Lopresti AL, Hood SD, Drummond PD (2012) Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 26(12):1512–1524

    Article  CAS  PubMed  Google Scholar 

  315. Aggarwal BB, Gupta SC, Sung B (2013) Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 169(8):1672–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Jeong YI, Kim SW, Jung ID, Lee JS, Chang JH, Lee CM, Chun SH, Yoon MS et al (2009) Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferon-gamma-stimulated murine dendritic cells. J Biol Chem 284(6):3700–3708

    Article  CAS  PubMed  Google Scholar 

  317. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 286(32):28556–28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 561(1):54–62

    Article  CAS  PubMed  Google Scholar 

  319. Yuan J, Liu W, Zhu H, Zhang X, Feng Y, Chen Y, Feng H, Lin J (2017) Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 207:85–91

    Article  CAS  PubMed  Google Scholar 

  320. Nedzvetsky VS, Agca CA, Kyrychenko SV (2017) Neuroprotective effect of curcumin on LPS-activated astrocytes is related to the prevention of GFAP and NF-κB upregulation. Neurophysiology 49(4):305–307

    Article  CAS  Google Scholar 

  321. Daverey A, Agrawal SK (2016) Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience 333:92–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the preparation of the manuscript.

Corresponding author

Correspondence to Leszek Rudzki.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudzki, L., Maes, M. The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Mol Neurobiol 57, 4269–4295 (2020). https://doi.org/10.1007/s12035-020-01961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01961-y

Keywords

Navigation