Skip to main content

Advertisement

Log in

Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaudhuri KR, Healy DG, Schapira AH, National Institute for Clinical E (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol 5(3):235–245. https://doi.org/10.1016/S1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  2. Gustafsson H, Nordstrom A, Nordstrom P (2015) Depression and subsequent risk of Parkinson disease: a nationwide cohort study. Neurology 84(24):2422–2429. https://doi.org/10.1212/WNL.0000000000001684

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23(2):183–189; quiz 313. https://doi.org/10.1002/mds.21803

    Article  PubMed  Google Scholar 

  4. Wei L, Hu X, Yuan Y, Liu W, Chen H (2018) Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson’s disease with depression. Behav Brain Res 347:132–139. https://doi.org/10.1016/j.bbr.2018.03.011

    Article  PubMed  Google Scholar 

  5. Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC (2014) Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci 8:230. https://doi.org/10.3389/fnsys.2014.00230

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gerhard DM, Duman RS (2018) Rapid-acting antidepressants: mechanistic insights and future directions. Curr Behav Neurosci Rep 5(1):36–47

    Article  Google Scholar 

  7. Xie Y, He Q, Chen H, Lin Z, Xu Y, Yang C (2019) Crocin ameliorates chronic obstructive pulmonary disease-induced depression via PI3K/Akt mediated suppression of inflammation. Eur J Pharmacol 862:172640. https://doi.org/10.1016/j.ejphar.2019.172640

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Previn R, Lu L, Liao RF, Jin Y, Wang RK (2018) Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res Bull 142:352–359. https://doi.org/10.1016/j.brainresbull.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  9. Ghalandari-Shamami M, Nourizade S, Yousefi B, Vafaei AA, Pakdel R, Rashidy-Pour A (2019) Beneficial effects of physical activity and Crocin against adolescent stress induced anxiety or depressive-like symptoms and dendritic morphology remodeling in prefrontal cortex in adult male rats. Neurochem Res 44(4):917–929. https://doi.org/10.1007/s11064-019-02727-2

    Article  CAS  PubMed  Google Scholar 

  10. Rao SV, Muralidhara, Yenisetti SC, Rajini PS (2016) Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism. Neurotoxicology 52:230–242. https://doi.org/10.1016/j.neuro.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  11. Rajaei Z, Hosseini M, Alaei H (2016) Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arq Neuropsiquiatr 74(9):723–729. https://doi.org/10.1590/0004-282X20160131

    Article  CAS  PubMed  Google Scholar 

  12. Wu R, Tao W, Zhang H, Xue W, Zou Z, Wu H, Cai B, Doron R et al (2016) Instant and persistent antidepressant response of Gardenia yellow pigment is associated with acute protein synthesis and delayed upregulation of BDNF expression in the hippocampus. ACS Chem Neurosci 7(8):1068–1076. https://doi.org/10.1021/acschemneuro.6b00011

    Article  CAS  PubMed  Google Scholar 

  13. Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid−glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). J Agric Food Chem 44(9):2612–2615

    Article  CAS  Google Scholar 

  14. Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L (2015) Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:388. https://doi.org/10.3389/fncel.2015.00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu R, Xiao D, Shan X, Dong Y, Tao WW (2020) Rapid and prolonged antidepressant-like effect of crocin is associated with GHSR-mediated hippocampal plasticity-related proteins in mice exposed to prenatal stress. ACS Chem Neurosci 11(8):1159–1170. https://doi.org/10.1021/acschemneuro.0c00022

    Article  CAS  PubMed  Google Scholar 

  16. Tang J, Xue W, Xia B, Ren L, Tao W, Chen C, Zhang H, Wu R et al (2015) Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep 5:13573. https://doi.org/10.1038/srep13573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu M, Zhao FF, Tang JJ, Su CJ, Fan Y, Ding JH, Bian JS, Hu G (2012) The neuroprotection of hydrogen sulfide against MPTP-induced dopaminergic neuron degeneration involves uncoupling protein 2 rather than ATP-sensitive potassium channels. Antioxid Redox Signal 17(6):849–859. https://doi.org/10.1089/ars.2011.4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Du L, Bai Y, Han B, He C, Gong L, Huang R, Shen L et al (2018) CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0285-0

  19. Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, Yang H, Zhang Z et al (2019) Echinacoside protects against MPTP/MPP(+)-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab Brain Dis 34(1):203–212. https://doi.org/10.1007/s11011-018-0330-3

    Article  CAS  PubMed  Google Scholar 

  20. Cooney JW, Stacy M (2016) Neuropsychiatric issues in Parkinson’s disease. Curr Neurol Neurosci Rep 16(5):49. https://doi.org/10.1007/s11910-016-0647-4

    Article  PubMed  Google Scholar 

  21. Kulisevsky J, Oliveira L, Fox SH (2018) Update in therapeutic strategies for Parkinson’s disease. Curr Opin Neurol 31(4):439–447. https://doi.org/10.1097/WCO.0000000000000579

    Article  PubMed  Google Scholar 

  22. Okano M, Takahata K, Sugimoto J, Muraoka S (2019) Selegiline recovers synaptic plasticity in the medial prefrontal cortex and improves corresponding depression-like behavior in a mouse model of Parkinson’s disease. Front Behav Neurosci 13:176. https://doi.org/10.3389/fnbeh.2019.00176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sampaio TB, Marcondes Sari MH, Pesarico AP, Mantovani AC, Zeni G, Nogueira CW (2018) 7-Fluoro-1,3-diphenylisoquinoline reverses motor and non-motor symptoms induced by MPTP in mice: role of striatal neuroinflammation. Eur J Pharmacol 819:129–135. https://doi.org/10.1016/j.ejphar.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  24. Schamne MG, Mack JM, Moretti M, Matheus FC, Walz R, Lanfumey L, Prediger RD (2018) The gender-biased effects of intranasal MPTP administration on anhedonic- and depressive-like behaviors in C57BL/6 mice: the role of neurotrophic factors. Neurotox Res 34(4):808–819. https://doi.org/10.1007/s12640-018-9912-4

    Article  CAS  PubMed  Google Scholar 

  25. Dalle E, Mabandla MV (2018) Early life stress, depression and Parkinson’s disease: a new approach. Mol Brain 11(1):18. https://doi.org/10.1186/s13041-018-0356-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan T, Sun Y, Gong G, Li Y, Fan K, Wu B, Bi K, Jia Y (2019) The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IkappaBalpha/NF-kappaB pathway. Exp Gerontol 128:110743. https://doi.org/10.1016/j.exger.2019.110743

    Article  CAS  PubMed  Google Scholar 

  27. Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 18(4):251–259. https://doi.org/10.1038/nrn.2017.25

    Article  CAS  PubMed  Google Scholar 

  28. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113. https://doi.org/10.1038/nrn.2016.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xin W, Edwards N, Bonci A (2016) VTA dopamine neuron plasticity—the unusual suspects. Eur J Neurosci 44(12):2975–2983. https://doi.org/10.1111/ejn.13425

    Article  PubMed  Google Scholar 

  30. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, Dietz DM et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344(6181):313–319. https://doi.org/10.1126/science.1249240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aarsland D, Pahlhagen S, Ballard CG, Ehrt U, Svenningsson P (2011) Depression in Parkinson disease—epidemiology, mechanisms and management. Nat Rev Neurol 8(1):35–47. https://doi.org/10.1038/nrneurol.2011.189

    Article  CAS  PubMed  Google Scholar 

  32. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152(4):1024–1031. https://doi.org/10.1016/j.neuroscience.2008.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287. https://doi.org/10.1146/annurev.neuro.051508.135535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493(7433):537–541. https://doi.org/10.1038/nature11740

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Sun H, Ding J, Niu C, Su M, Zhang L, Li Y, Wang C et al (2017) Selective targeting of M-type potassium Kv 7.4 channels demonstrates their key role in the regulation of dopaminergic neuronal excitability and depression-like behaviour. Br J Pharmacol 174(23):4277–4294. https://doi.org/10.1111/bph.14026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farassat N, Costa KM, Stojanovic S, Albert S, Kovacheva L, Shin J, Egger R, Somayaji M et al (2019) In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. Elife 8:8. https://doi.org/10.7554/eLife.48408

    Article  Google Scholar 

  37. Bockaert J, Marin P (2015) mTOR in brain physiology and pathologies. Physiol Rev 95(4):1157–1187. https://doi.org/10.1152/physrev.00038.2014

    Article  CAS  PubMed  Google Scholar 

  38. Fernandez-Santiago R, Martin-Flores N, Antonelli F, Cerquera C, Moreno V, Bandres-Ciga S, Manduchi E, Tolosa E et al (2019) SNCA and mTOR pathway single nucleotide polymorphisms interact to modulate the age at onset of Parkinson’s disease. Mov Disord 34(9):1333–1344. https://doi.org/10.1002/mds.27770

    Article  CAS  PubMed  Google Scholar 

  39. Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12(9):1129–1135. https://doi.org/10.1038/nn.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. https://doi.org/10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cleary C, Linde JA, Hiscock KM, Hadas I, Belmaker RH, Agam G, Flaisher-Grinberg S, Einat H (2008) Antidepressive-like effects of rapamycin in animal models: implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Res Bull 76(5):469–473. https://doi.org/10.1016/j.brainresbull.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  42. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ et al (2015) Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162(3):622–634. https://doi.org/10.1016/j.cell.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no.81603089, no. 81873096) and the Natural Science Foundation of Jiangsu Province (BK20161044).

Author information

Authors and Affiliations

Authors

Contributions

Special thanks to all authors who contributed to this research. Juanjuan Tang and Gang Chen designed the whole study together. Linyu Lu provided all pictures in the manuscript. Qisheng Wang, Kai Wang, and Die Wu prepared the animal model. Hou Liu and Tong Zhou took responsibility for the data of patch clamp. Wenda Xue guided the statistics of the manuscript. Weiwei Tao and Liantiao Xu took responsible for preparation and identification of β-D-gentiobiosyl crocetin. Juanjuan Tang wrote the whole paper and organized all supplemental information materials. Gang Chen and Fei Wei provided corrections for the paper.

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Lu, L., Wang, Q. et al. Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway. Mol Neurobiol 57, 3158–3170 (2020). https://doi.org/10.1007/s12035-020-01941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01941-2

Keywords

Navigation