Skip to main content

Advertisement

Log in

Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) of reward system brain areas, such as the medial forebrain bundle (MFB), by means of intracranial self-stimulation (ICSS), facilitates learning and memory in rodents. MFB-ICSS has been found capable of modifying different plasticity-related proteins, but its underlying molecular mechanisms require further elucidation. MicroRNAs (miRNAs) and the longevity-associated SIRT1 protein have emerged as important regulatory molecules implicated in neural plasticity. Thus, we aimed to analyze the effects of MFB-ICSS on miRNAs expression and SIRT1 protein levels in hippocampal subfields and serum. We used OpenArray to select miRNA candidates differentially expressed in the dentate gyrus (DG) of ICSS-treated (3 sessions, 45′ session/day) and sham rats. We further analyzed the expression of these miRNAs, together with candidates selected after bibliographic screening (miR-132-3p, miR-134-5p, miR-146a-5p, miR-181c-5p) in DG, CA1, and CA3, as well as in serum, by qRT-PCR. We also assessed tissue and serum SIRT1 protein levels by Western Blot and ELISA, respectively. Expression of miR-132-3p, miR-181c-5p, miR-495-3p, and SIRT1 protein was upregulated in DG of ICSS rats (P < 0.05). None of the analyzed molecules was regulated in CA3, while miR-132-3p was also increased in CA1 (P = 0.011) and serum (P = 0.048). This work shows for the first time that a DBS procedure, specifically MFB-ICSS, modulates the levels of plasticity-related miRNAs and SIRT1 in specific hippocampal subfields. The mechanistic role of these molecules could be key to the improvement of memory by MFB-ICSS. Moreover, regarding the proposed clinical applicability of DBS, serum miR-132 is suggested as a potential treatment biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CA:

Cornu Ammonis

DBS:

Deep brain stimulation

DG:

Dentate gyrus

HP:

Hippocampus

ICSS:

Intracranial self-stimulation

LH:

Lateral hypothalamus

MFB:

Medial forebrain bundle

miRNA:

MicroRNA

SIRT1:

Sirtuin1

References

  1. Khan IS, D’Agostino EN, Calnan DR, Lee JE, Aronson JP (2019) Deep brain stimulation for memory modulation: a new frontier. World Neurosurg 126:638–646. https://doi.org/10.1016/j.wneu.2018.12.184

    Article  PubMed  Google Scholar 

  2. Aldehri M, Temel Y, Alnaami I, Jahanshahi A, Hescham S (2018) Deep brain stimulation for Alzheimer’s disease: an update. Surg Neurol Int 9:58. https://doi.org/10.4103/sni.sni_342_17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soriano-Mas C, Redolar-Ripoll D, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P (2005) Post-training intracranial self-stimulation facilitates a hippocampus-dependent task. Behav Brain Res 160:141–147. https://doi.org/10.1016/j.bbr.2004.11.025

    Article  PubMed  Google Scholar 

  4. Ruiz-Medina J, Morgado-Bernal I, Redolar-Ripoll D, Aldavert-Vera L, Segura-Torres P (2008) Intracranial self-stimulation facilitates a spatial learning and memory task in the Morris water maze. Neuroscience 154:424–430. https://doi.org/10.1016/j.neuroscience.2008.03.059

    Article  CAS  PubMed  Google Scholar 

  5. García-Brito S, Morgado-Bernal I, Biosca-Simon N, Segura-Torres P (2017) Intracranial self-stimulation also facilitates learning in a visual discrimination task in the Morris water maze in rats. Behav Brain Res 317:360–366. https://doi.org/10.1016/j.bbr.2016.09.069

    Article  PubMed  Google Scholar 

  6. Redolar-Ripoll D, Soriano-Mas C, Guillazo-Blanch G, Aldavert-Vera L, Segura-Torres P, Morgado-Bernal I (2003) Posttraining intracranial self-stimulation ameliorates the detrimental effects of parafascicular thalamic lesions on active avoidance in young and aged rats. Behav Neurosci 117:246–256. https://doi.org/10.1037/0735-7044.117.2.246

    Article  PubMed  Google Scholar 

  7. Aldavert-Vera L, Costa-Miserachs D, Massané S-Rotger E, Soriano-Mas C, Segura-Torres P, Morgado-Bernal I (1997) Facilitation of a distributed shuttle-box conditioning with posttraining intracranial self-stimulation in old rats. Neurobiol Learn Mem 67:254–258. https://doi.org/10.1006/nlme.1997.3760

    Article  CAS  PubMed  Google Scholar 

  8. Segura-Torres P, Aldavert-Vera L, Gatell-Segura A, Redolar-Ripoll D, Morgado-Bernal I (2009) Intracranial self-stimulation recovers learning and memory capacity in basolateral amygdala-damaged rats. Neurobiol Learn Mem 93:117–126. https://doi.org/10.1016/j.nlm.2009.09.001

    Article  PubMed  Google Scholar 

  9. Shankaranarayana Rao BS, Raju TR, Meti BL (1999) Self-stimulation rewarding experience induced alterations in dendritic spine density in CA3 hippocampal and layer V motor cortical pyramidal neurons. Neuroscience 89:1067–1077. https://doi.org/10.1016/S0306-4522(98)00394-7

    Article  CAS  PubMed  Google Scholar 

  10. Chamorro-López J, Miguéns M, Morgado-Bernal I, Kastanauskaite A, Selvas A, Cabané-Cucurella A, Aldavert-Vera L, DeFelipe J et al (2015) Structural plasticity in hippocampal cells related to the facilitative effect of intracranial self-stimulation on a spatial memory task. Behav Neurosci 129:720–730. https://doi.org/10.1037/bne0000098

    Article  PubMed  Google Scholar 

  11. Kádár E, Huguet G, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P (2013) Intracranial self stimulation upregulates the expression of synaptic plasticity related genes and Arc protein expression in rat hippocampus. Genes Brain Behav 12:771–779. https://doi.org/10.1111/gbb.12065

    Article  CAS  PubMed  Google Scholar 

  12. Aldavert-Vera L, Huguet G, Costa-Miserachs D, Pena S, Ortiz D, Kádár E et al (2013) Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems. Behav Brain Res 250:46–57. https://doi.org/10.1016/j.bbr.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  13. Huguet G, Aldavert-Vera L, Kádár E, Peña De Ortiz S, Morgado-Bernal I, Segura-Torres P (2009) Intracranial self-stimulation to the lateral hypothalamus, a memory improving treatment, results in hippocampal changes in gene expression. Neuroscience 162:359–374. https://doi.org/10.1016/j.neuroscience.2009.04.074

    Article  CAS  PubMed  Google Scholar 

  14. Aksoy-Aksel A, Zampa F, Schratt G (2014) MicroRNAs and synaptic plasticity-a mutual relationship. Philos Trans R Soc Land B Biol Sci 369:1–11. https://doi.org/10.1098/rstb.2013.0515

    Article  CAS  Google Scholar 

  15. Earls LR, Westmoreland JJ, Zakharenko SS (2014) Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev 17:34–42. https://doi.org/10.1016/j.arr.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  16. Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334. https://doi.org/10.1016/j.tins.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salta E, Lau P, Frigerio CS, Coolen M, Bally-Cuif L, De Strooper B (2014) A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell 30:423–436. https://doi.org/10.1016/j.devcel.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  18. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884. https://doi.org/10.1210/me.2009-0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Wang W-Y, Mao Y-W, Gräff J, Guan J-S, Pan L, Mak G, Kim D et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109. https://doi.org/10.1038/nature09271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michán S, Li Y, Meng-Hsiu Chou M, Parrella E, Ge H, Long JM et al (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C et al (2018) SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep 8:8465. https://doi.org/10.1038/s41598-018-26547-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segura-Torres P, Portell-Cortés I, Morgado-Bernal I (1991) Improvement of shuttle-box avoidance with post-training intracranial self-stimulation, in rats: a parametric study. Behav Brain Res 42:161–167. https://doi.org/10.1016/S0166-4328(05)80007-5

    Article  CAS  PubMed  Google Scholar 

  23. Lein ES, Zhao X, Gag FH (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879–3889. https://doi.org/10.1523/JNEUROSCI.4710-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Her LS, Mao SH, Chang CY, Cheng PH, Chang YF, Yang HI, Chen CM, Yang SH (2017) miR-196a enhances neuronal morphology through suppressing RANBP10 to provide neuroprotection in Huntington’s disease. Theranostics 7:2452–2462. https://doi.org/10.7150/thno.18813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu M-H, Li C-L, Lin H-L, Tsai S-J, Lai Y-Y, Chang Y-F, Cheng PH, Chen CM et al (2015) The potential regulatory mechanisms of miR-196a in Huntington’s disease through bioinformatic analyses. PLoS One 10:e0137637. https://doi.org/10.1371/journal.pone.0137637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen JE, Lee PR, Chen S, Li W, Fields RD, Greenberg ME (2011) MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 108:11650–11655. https://doi.org/10.1073/pnas.1017576108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gondard E, Chau HN, Mann A, Tierney TS, Hamani C, Kalia SK, Lozano AM (2015) Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix. Brain Stimul 8:1058–1064. https://doi.org/10.1016/j.brs.2015.07.044

    Article  PubMed  Google Scholar 

  28. Nudelman AS, Dirocco DP, Lambert TJ, Garelick MG, Nathanson NM, Storm DR (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20:492–498. https://doi.org/10.1002/hipo.20646.Neuronal

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pai B, Siripornmongcolchai T, Berentsen B, Pakzad A, Vieuille C, Pallesen S, Pajak M, Simpson TI et al (2014) NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo. Front Cell Neurosci 7:285. https://doi.org/10.3389/fncel.2013.00285

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hussain RJ, Carpenter DO (2005) A comparison of the roles of protein kinase C in long-term potentiation in rat hippocampal areas CA1 and CA3. Cell Mol Neurobiol 25:649–661. https://doi.org/10.1007/s10571-005-4045-8

    Article  CAS  PubMed  Google Scholar 

  31. McBain CJ (2008) New directions in synaptic and network plasticity-a move away from NMDA receptor mediated plasticity. J Physiol 586:1473–1474. https://doi.org/10.1113/jphysiol.2008.151183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69:745–749. https://doi.org/10.1002/jnr.10378

    Article  CAS  PubMed  Google Scholar 

  33. Wang W, Kwon EJ, Tsai L-H (2012) MicroRNAs in learning, memory, and neurological diseases. Learn Mem 19:359–368. https://doi.org/10.1101/lm.026492.112

    Article  CAS  PubMed  Google Scholar 

  34. Prins SA, Przybycien-Szymanska MM, Rao YS, Pak TR (2013) Long-term effects of peripubertal binge EtOH exposure on hippocampal microRNA expression in the rat. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0083166

    Article  CAS  Google Scholar 

  35. Bastle RM, Oliver RJ, Gardiner AS, Pentkowski NS, Bolognani F, Allan AM, Chaudhury T, St. Peter M et al (2018) In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 23:434–443. https://doi.org/10.1038/mp.2016.238

    Article  CAS  PubMed  Google Scholar 

  36. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817–831. https://doi.org/10.1007/s00429-012-0431-4

    Article  PubMed  Google Scholar 

  37. Wang RY, Phang RZ, Hsu PH, Wang WH, Huang HT, Liu IY (2013) In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning. Hippocampus 23:625–633. https://doi.org/10.1002/hipo.22123

    Article  CAS  PubMed  Google Scholar 

  38. Fang C, Li Q, Min G, Liu M, Cui J, Sun J, Li L (2017) MicroRNA-181c ameliorates cognitive impairment induced by chronic cerebral hypoperfusion in rats. Mol Neurobiol 54:8370–8385. https://doi.org/10.1007/s12035-016-0268-6

    Article  CAS  PubMed  Google Scholar 

  39. Luikart BW, Bensen ASL, Washburn EK, Perederiy JV, Su KG, Li Y, Kernie SG, Parada LF et al (2011) MiR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS One 6:e19077. https://doi.org/10.1371/journal.pone.0019077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huguet G, Kádár E, Serrano N, Tapias-Espinosa C, García-Brito S, Morgado-Bernal I, Aldavert-Vera L et al (2019) Rewarding deep brain stimulation at the medial forebrain bundle favours avoidance conditioned response in a remote memory test, hinders extinction and increases neurogenesis. Behav Brain Res 378:e112308. https://doi.org/10.1016/j.bbr.2019.112308

    Article  Google Scholar 

  41. Takahashi T, Zhu Y, Hata T, Shimizu-Okabe C, Suzuki K, Nakahara D (2009) Intracranial self-stimulation enhances neurogenesis in hippocampus of adult mice and rats. Neuroscience 158:402–411. https://doi.org/10.1016/J.NEUROSCIENCE.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  42. Impey S, Davare M, Lesiak A, Lasiek A, Fortin D, Ando H et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156. https://doi.org/10.1016/j.mcn.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  43. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102:16426–16431. https://doi.org/10.1073/pnas.0508448102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yiu AP, Rashid AJ, Josselyn SA (2011) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 36:2169–2186. https://doi.org/10.1038/npp.2011.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B, Ofte ML et al (2012) MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One 7:e41688. https://doi.org/10.1371/journal.pone.0041688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kos A, Olde Loohuis N, Meinhardt J, van Bokhoven H, Kaplan BB, Martens GJ, Aschrafi A (2016) MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell Mol Life Sci 73:3555–3567. https://doi.org/10.1007/s00018-016-2179-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olde Loohuis NFM, Kole K, Glennon JC, Karel P, Van der Borg G, Van Gemert Y et al (2015) Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 80:42–53. https://doi.org/10.1016/j.nbd.2015.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schonrock N, Humphreys DT, Preiss T, Götz J (2012) Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 46:324–335. https://doi.org/10.1007/s12031-011-9587-2

    Article  CAS  PubMed  Google Scholar 

  49. Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC (2012) SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 7:e47073. https://doi.org/10.1371/journal.pone.0047073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483. https://doi.org/10.1016/j.neuron.2014.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma C-Y, Yao M-J, Zhai Q-W, Jiao J-W, Yuan X-B, Poo M-M (2014) SIRT1 suppresses self-renewal of adult hippocampal neural stem cells. Development 141:4697–4709. https://doi.org/10.1242/dev.117937

    Article  CAS  PubMed  Google Scholar 

  52. Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M et al (2016) microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953. https://doi.org/10.1038/srep30953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang W-X, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205. https://doi.org/10.1007/s00401-010-0756-0

    Article  PubMed  Google Scholar 

  54. Geekiyanage H, Chan C (2011) Neurobiology of disease microRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830. https://doi.org/10.1523/JNEUROSCI.3883-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong HKA, Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevsky AM (2013) De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet 22:3077–3092. https://doi.org/10.1093/hmg/ddt164

    Article  CAS  PubMed  Google Scholar 

  56. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y et al (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770. https://doi.org/10.3389/fphar.2017.00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS et al (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5:1613–1634. https://doi.org/10.1002/emmm.201201974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salta E, Sierksma A, Eynden EV, De Strooper B (2016) miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol Med 8:1005–1018. https://doi.org/10.15252/emmm.201606520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bonda DJ, Lee H, Camins A, Pallàs M, Casadesus G, Smith MA, Zhu X (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10:275–279. https://doi.org/10.1016/S1474-4422(11)70013-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T, Götz J (2010) Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-b. PLoS One 5:e11070. https://doi.org/10.1371/journal.pone.0011070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith PY, Hernandez-Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, Dorval V, Parsi S et al (2015) miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet 24:6721–6735. https://doi.org/10.1093/hmg/ddv377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan L, Yu J-T, Liu Q-Y, Tan M-S, Zhang W, Hu N, Wang YL, Sun L et al (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56. https://doi.org/10.1016/j.jns.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  63. Julien C, Tremblay C, Émond V, Lebbadi M, Salem N Jr, Bennett DA et al (2009) SIRT1 decrease parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58. https://doi.org/10.1097/NEN.0b013e3181922348

    Article  CAS  PubMed  Google Scholar 

  64. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z et al (2018) MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol 136:537–555. https://doi.org/10.1007/s00401-018-1880-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Min S-W, Sohn PD, Li Y, Devidze N, Johnson JR, Krogan NJ, Masliah E, Mok SA et al (2018) Neurobiology of disease SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy. J Neurosci 38:3680–3688. https://doi.org/10.1523/JNEUROSCI.2369-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Anna Mercader Carceller for her technical support. Likewise, we thank Carlos Baldellou Estrada and Cristina Gerboles Freixas for their inestimable technical contribution.

Funding

Ministerio de Economía, Indústria y Competitividad (MINECO) provided financial support for the conduct of this work (grant number PSI2017-83202-C2-2-P). I. Puig-Parnau is a recipient of a predoctoral fellowship from the University of Girona (grant number IFUdG2017/61).

Author information

Authors and Affiliations

Authors

Contributions

PS, LA, and SG performed MFB-ICSS procedures. IP performed molecular assays and data analyses. NF contributed in SIRT1 molecular analysis and CG in microRNA analyses. IP, EK, and GH designed the experiments and interpreted data. IP and EK were the major contributors in writing the manuscript. EK, GH, LA, and PS revised it critically. All authors read and approved the final manuscript and agreed to be accountable in ensuring appropriate answer to questions related to the accuracy and integrity of any part of the work.

Corresponding authors

Correspondence to Gemma Huguet or Elisabet Kádár.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ethics Committee at the Universitat Autònoma de Barcelona, with order number 3942).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig-Parnau, I., Garcia-Brito, S., Faghihi, N. et al. Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol Neurobiol 57, 2551–2562 (2020). https://doi.org/10.1007/s12035-020-01901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01901-w

Keywords

Navigation