Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease

Abstract

Finding a therapy for Alzheimer’s disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates. Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain. This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive. Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal. Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction. Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

AD:

Alzheimer’s disease

AEA:

Arachidonoyl ethanolamide

APP:

Amyloid precursor protein

ARA:

Arachidonic acid

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine

CBC:

Cannabichromene

CBD:

Cannabidiol

CBD:

Cannabidiolic acid

CBDV:

Cannabidivarin

CBG:

Cannabigerol

CBGA:

Cannabigerolic acid

CBN:

Cannabinol

DEA:

Drug Enforcement Agency

DMCBD:

Cannabidiol 2′,6′ dimethyl ether

DMEM:

Dulbecco’s modified Eagle medium

FAD:

Familial Alzheimer’s disease

FCS:

Fetal calf serum

LPS:

Lipopolysaccharide

MCBN:

Methylated cannabinol

MTT:

Tetrazolium-based colorimetric assay

NADA:

N-arachidonoly dopamine

NMR:

Nuclear magnetic resonance

ROS:

Reactive oxygen species

SAR:

Structure-activity relationship

THC:

Tetrahydrocannabinol

THCA:

Tetrahydrocannabinol acid

TMSCHN2 :

Trimethylsilyldiazomethane.

References

  1. 1.

    Alzheimer’s Disease International (2015, www.alz.co.uk/research/statistics ) Dementia statistics. Vol. 2018, n.p.

  2. 2.

    Cummings J (2018) Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci 11:147–152

    PubMed  Google Scholar 

  3. 3.

    Prior M, Chiruta C, Currais A, Goldberg J, Dargusch R, Maher P, Schubert D (2014) Back to the future with phenotypic screening. ACS Chem Neurosci 5:503–513

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Brenneisen R (2007) Chemistry and analysis of phytocannabinoids and other cannabis constituents. In: Eisohly MA (ed) Marijuana and th cannabinoids (322 pgs). Humana Press, Totowa, New Jersey, pp. 17–49

    Google Scholar 

  5. 5.

    Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, Bonini SA (2018) Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2018-0013

  6. 6.

    Paez JA, Campillo NE (2018) Innovative therapeutic potential of cannabinoid receptors as targets in Alzheimer’s disease and less well-known diseases. Curr Med Chem. https://doi.org/10.2174/0929867325666180226095132

    PubMed  Google Scholar 

  7. 7.

    Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47

    PubMed  Google Scholar 

  8. 8.

    Currais A, Fischer W, Maher P, Schubert D (2017) Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J 31:5–10

    CAS  PubMed  Google Scholar 

  9. 9.

    Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy. 4:176–184

    CAS  PubMed  Google Scholar 

  10. 10.

    Sopher BL, Fukuchi K, Smith AC, Leppig KA, Furlong CE, Martin GM (1994) Cytotoxicity mediated by conditional expression of a carboxyl-terminal derivative of the beta-amyloid precursor protein. Brain Res Mol Brain Res 26:207–217

    CAS  PubMed  Google Scholar 

  11. 11.

    Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140

    CAS  PubMed  Google Scholar 

  12. 12.

    Currais A, Quehenberger O, A MA, Daugherty D, Maher P, Schubert D (2016) Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ Aging Mech Dis 2:16012

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Cao C, Li Y, Liu H, Bai G, Mayl J, Lin X, Sutherland K, Nabar N et al (2014) The potential therapeutic effects of THC on Alzheimer’s disease. J Alzheimers Dis 42:973–984

    CAS  PubMed  Google Scholar 

  14. 14.

    Janefjord E, Maag JL, Harvey BS, Smid SD (2014) Cannabinoid effects on beta amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell Mol Neurobiol 34:31–42

    CAS  PubMed  Google Scholar 

  15. 15.

    Aso E, Andres-Benito P, Ferrer I (2016) Delineating the efficacy of a cannabis-based medicine at advanced stages of dementia in a murine model. J Alzheimers Dis 54:903–912

    CAS  PubMed  Google Scholar 

  16. 16.

    Aso E, Juves S, Maldonado R, Ferrer I (2013) CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimers Dis 35:847–858

    PubMed  Google Scholar 

  17. 17.

    Valera E, Dargusch R, Maher PA, Schubert D (2013) Modulation of 5-lipoxygenase in proteotoxicity and Alzheimer’s disease. J Neurosci 33:10512–10525

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Maher P, Salgado KF, Zivin JA, Lapchak PA (2007) A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res 1173:117–125

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    CAS  PubMed  Google Scholar 

  20. 20.

    Lewerenz J, Maher P (2011) Control of redox state and redox signaling by neural antioxidant systems. Antioxid Redox Signal 14:1449–1465

    CAS  PubMed  Google Scholar 

  21. 21.

    Maher P (2015) How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 7:58–82

    Google Scholar 

  22. 22.

    Lewerenz J, Ates G, Methner A, Conrad M, Maher P (2018) Oxytosis/ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system. Frontiers Neurosci 12:214

    Google Scholar 

  23. 23.

    Schubert D, Piasecki D (2001) Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci 21:7455–7462

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lewerenz J, Chronic MP (2015) Glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 9:469

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Takeda S, Hirayama A, Urata S, Mano N, Fukagawa K, Imamura M, Irii A, Kitajima S et al (2011) Cannabidiol-2′,6′-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro. Biol Pharm Bull 34:1252–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Goldberg J, Currais A, Prior M, Fischer W, Ratiff E, Daugherty D, Dargusch R, Finley K et al (2018) The mitochondrial ATP synthase is a shared drug target among aging and dementia. Aging Cell 17:e12715

    PubMed Central  Google Scholar 

  27. 27.

    Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NKGDNF (2013) NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    CAS  PubMed  Google Scholar 

  28. 28.

    McCoy KL (2016) Interaction between cannabinoid system and toll-like receptors controls inflammation. Mediators Inflamm 2016:5831315

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: Immune functional relevance. J Leukoc Biol 78:1192–1197

    CAS  PubMed  Google Scholar 

  30. 30.

    Mechoulam R, Feigenbaum JJ, Lander N, Segal M, Jarbe TU, Hiltunen AJ, Consroe P (1988) Enantiomeric cannabinoids: stereospecificity of psychotropic activity. Experientia. 44:762–764

    CAS  PubMed  Google Scholar 

  31. 31.

    Darlington CL (2003) Dexanabinol: a novel cannabinoid with neuroprotective properties. IDrugs 6:976–979

    CAS  PubMed  Google Scholar 

  32. 32.

    Fukaya T, Gondaira T, Kashiyae Y, Kotani S, Ishikura Y, Fujikawa S, Kiso Y, Sakakibara M (2007) Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats. Neurobiol Aging 28:1179–1186

    CAS  PubMed  Google Scholar 

  33. 33.

    Darios F, Davletov B (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440:813–817

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang ZJ, Liang CL, Li GM, Yu CY, Yin M (2006) Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices. Chem Biol Interact 163:207–217

    CAS  PubMed  Google Scholar 

  35. 35.

    Amtul Z, Uhrig M, Wang L, Rozmahel RF, Beyreuther K (2012) Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s disease: structural insight. Neurobiol Aging 33:831 e821–831 e831

    Google Scholar 

  36. 36.

    Sanchez-Ramos J (2015) The entourage effect of the phytocannabinoids. Ann Neurol 77:1083

    PubMed  Google Scholar 

  37. 37.

    ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36

    CAS  PubMed  Google Scholar 

  38. 38.

    Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    CAS  PubMed  Google Scholar 

  39. 39.

    Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hajos N, Ledent C, Freund TF (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience. 106:1–4

    CAS  PubMed  Google Scholar 

  41. 41.

    Petitet F, Jeantaud B, Reibaud M, Imperato A, Dubroeucq MC (1998) Complex pharmacology of natural cannabinoids: evidence for partial agonist activity of delta9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors. Life Sci 63:PL1–PL6

    CAS  PubMed  Google Scholar 

  42. 42.

    Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456

    CAS  PubMed  Google Scholar 

  43. 43.

    Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527

    CAS  PubMed  Google Scholar 

  44. 44.

    Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB et al (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30:1037–1043

    CAS  PubMed  Google Scholar 

  46. 46.

    McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z (2010) Walker JM, and Bradshaw HB N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Cascio MG, Gauson LA, Stevenson LA, Ross RA, and Pertwee RG Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 2010;159:129–141.

  48. 48.

    Hill TD, Cascio MG, Romano B, Duncan N, Pertwee RG, Williams CM, Whalley BJ, Hill AJ (2013) Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 170:679–692

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Thomas A, Stevenson LA, Wease KN, Price MR, Baillie G, Ross RA, and Pertwee RG Evidence that the plant cannabinoid Delta-9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor agonist. Br J Pharmacol 2005;146:917–926.

  50. 50.

    Tai S, Fantegrossi WE (2017) Pharmacological and toxicological effects of synthetic cannabinoids and their metabolites. Curr Top Behav Neurosci 32:249–262

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Watt G, Karl T (2017) In vivo evidence for therapeutic properties of cannabidiol (CBD) for Alzheimer’s disease. Front Pharmacol 8:20

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Fonseca BM, Teixeira NA, Correia-da-Silva G (2017) Cannabinoids as modulators of cell death: clinical applications and future directions. Rev Physiol Biochem Pharmacol 173:63–88

    CAS  PubMed  Google Scholar 

  53. 53.

    Harvey BS, Ohlsson KS, Maag JL, Musgrave IF, Smid SD (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-beta evoked neurotoxicity in vitro. Neurotoxicology. 33:138–146

    CAS  PubMed  Google Scholar 

  54. 54.

    Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V et al (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151:1272–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D, Cipriano M, Carratu MR et al (2011) Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One 6:e28668

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Cheng D, Low JK, Logge W, Garner B, Karl T (2014) Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1E9 mice. Psychopharmacology 231:3009–3017

    CAS  PubMed  Google Scholar 

  57. 57.

    Cheng D, Spiro AS, Jenner AM, Garner B, Karl T (2014) Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J Alzheimers Dis 42:1383–1396

    CAS  PubMed  Google Scholar 

  58. 58.

    Casarejos MJ, Perucho J, Gomez A, Munoz MP, Fernandez-Estevez M, Sagredo O, Fernandez Ruiz J, Guzman M et al (2013) Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. J Alzheimers Dis 35:525–539

    CAS  PubMed  Google Scholar 

  59. 59.

    Aso E, Ferrer I (2014) Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front Pharmacol 5:37

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Aso E, Sanchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I (2015) Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J Alzheimers Dis 43:977–991

    CAS  PubMed  Google Scholar 

  61. 61.

    Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685

    CAS  PubMed  Google Scholar 

  62. 62.

    Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget. 8:38022–38043

    PubMed  Google Scholar 

  63. 63.

    Tannenbaum C, Sheehan NL (2014) Understanding and preventing drug-drug and drug-gene interactions. Expert Rev Clin Pharmacol 7:533–544

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Paul F. Glenn Center for Aging at the Salk Institute (JG), NIH (RO1 AG046153 and RF1 AG054714 to PM and DS, and R41AI104034 to PM), the Edward N. & Della Thome Memorial Foundation (PM), and the Salk Core Facility (NIH-NCI:P30 014195, the Chapman Foundation and the Helmsley Trust).

Author information

Affiliations

Authors

Contributions

DS and PM wrote the paper and did most of the screening assays. ZL did the SAR analysis. JG, RD, and KD contributed to some of the screening assays.

Corresponding author

Correspondence to Pamela Maher.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

All of the cell lines used in the screening assays are available. All data generated or analyzed during this study are included in the manuscript or available upon request.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schubert, D., Kepchia, D., Liang, Z. et al. Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease. Mol Neurobiol 56, 7719–7730 (2019). https://doi.org/10.1007/s12035-019-1637-8

Download citation

Keywords

  • Cannabinoids
  • Alzheimer’s
  • Neuroprotection
  • Drug discovery
  • Phenotypic screening