Latta CH, Brothers HM, Wilcock DM (2015) Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience 302:103–111. https://doi.org/10.1016/j.neuroscience.2014.09.061
CAS
Article
PubMed
Google Scholar
Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70. https://doi.org/10.1111/ene.13439
CAS
Article
PubMed
Google Scholar
Rogaev EI (2018) Different pathways to neurodegeneration. Biochemistry (Mosc) 83:1007–1008. https://doi.org/10.1134/S0006297918090018
CAS
Article
Google Scholar
Melis RJF, Haaksma ML, Muniz-Terrera G (2019) Understanding and predicting the longitudinal course of dementia. Curr Opin Psychiatry 32:123–129. https://doi.org/10.1097/YCO.0000000000000482
Article
PubMed
PubMed Central
Google Scholar
Dong A, Toledo JB, Honnorat N, Doshi J, Varol E, Sotiras A, Wolk D, Trojanowski JQ et al (2017) Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers. Brain 140:735–747. https://doi.org/10.1093/brain/aww319
Article
PubMed
Google Scholar
Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663. https://doi.org/10.1111/joim.12816
CAS
Article
PubMed
Google Scholar
Bhagwat N, Pipitone J, Voineskos AN, Chakravarty MM, Alzheimer’s disease neuroimaging initiative (2019) An artificial neural network model for clinical score prediction in Alzheimer disease using structural neuroimaging measures. J Psychiatry Neurosci 44:1–15
Article
Google Scholar
Berkowitz CL, Mosconi L, Scheyer O, Rahman A, Hristov H, Isaacson RS (2018) Precision medicine for Alzheimer’s disease prevention. Healthcare (Basel) 6(3). https://doi.org/10.3390/healthcare6030082
Hodes JF, Oakley CI, O’Keefe JH, Lu P, Galvin JE, Saif N, Bellara S, Rahman A et al (2019) Alzheimer’s “prevention” vs. “risk reduction”: transcending semantics for clinical practice. Front Neurol 9:179. https://doi.org/10.3389/fneur.2018.01179
Article
Google Scholar
Isaacson RS, Ganzer CA, Hristov H, Hackett K, Caesar E, Cohen R, Kachko R, Meléndez-Cabrero J et al (2018) The clinical practice of risk reduction for Alzheimer’s disease: a precision medicine approach. Alzheimers Dement 14:1663–1673. https://doi.org/10.1016/j.jalz.2018.08.004
Article
PubMed
Google Scholar
Kauppinen S, Vester B, Wengel J (2006) Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handbook of Exp Pharmacol 173:405–422
Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T, Suzuki T (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23:433–438. https://doi.org/10.1101/gad.1761509
CAS
Article
PubMed
PubMed Central
Google Scholar
Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–104. https://doi.org/10.1016/j.neulet.2009.04.052
CAS
Article
PubMed
Google Scholar
Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37:436–446. https://doi.org/10.1016/j.tibs.2012.07.002
CAS
Article
PubMed
Google Scholar
Pogue AI, Hill JM, Lukiw WJ (2014) MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS. Brain Res 1584:73–79. https://doi.org/10.1016/j.brainres.2014.03.042
CAS
Article
PubMed
Google Scholar
Zhao Y, Alexandrov PN, Lukiw WJ (2016) Anti-microRNAs as novel therapeutic agents in the clinical management of Alzheimer’s disease. Front Neurosci 10:59. https://doi.org/10.3389/fnins.2016.00059
Article
PubMed
PubMed Central
Google Scholar
Exiqon-Qiagen, Germantown MD, USA; http://www.exiqon.com/lna-technology; last accessed 12 March 2019).
Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. https://doi.org/10.1038/nature09267
CAS
Article
PubMed
PubMed Central
Google Scholar
Towler BP, Jones CI, Newbury SF (2015) Mechanisms of regulation of mature miRNAs. Biochem Soc Trans 43:1208–1214. https://doi.org/10.1042/BST20150157
CAS
Article
PubMed
Google Scholar
Zhao Y, Jaber VR, LeBeauf A, Sharfman NM, Lukiw WJ (2019) microRNA-34a (miRNA-34a) mediated down-regulation of the post-synaptic cytoskeletal element SHANK3 in sporadic Alzheimer’s disease (AD). Front Neurol 10:28. https://doi.org/10.3389/fneur.2019.00028
Article
PubMed
PubMed Central
Google Scholar
Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ (2016) microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One 11(3):e0150211. https://doi.org/10.1371/journal.pone.0150211
CAS
Article
PubMed
PubMed Central
Google Scholar
Bartel DP (2018) Metazoan microRNAs. Cell. 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006
CAS
Article
PubMed
PubMed Central
Google Scholar
Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011
CAS
Article
PubMed
Google Scholar
Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433. https://doi.org/10.1038/nrg3965
CAS
Article
PubMed
Google Scholar
Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2019) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76:441–451. https://doi.org/10.1007/s00018-018-2940-7
CAS
Article
PubMed
Google Scholar
Lukiw WJ, Zhao Y, Cui JG (2008) An NF-kB-sensitive miRNA-146a-mediated inflammatory circuit in AD and in stressed human brain cells. J Biol Chem 283:31315–31322. https://doi.org/10.1074/jbc.M805371200
CAS
Article
PubMed
PubMed Central
Google Scholar
Pogue AI, Li YY, Cui JG, Zhao Y, Kruck TP, Percy ME, Tarr MA, Lukiw WJ (2009) Characterization of an NF-kB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem 103:1591–1595. https://doi.org/10.1016/j.jinorgbio.2009.05.012
CAS
Article
PubMed
Google Scholar
Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of IRAK-1 and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer’s disease. J Biol Chem 285:38951–38960. https://doi.org/10.1074/jbc.M110.178848
CAS
Article
PubMed
PubMed Central
Google Scholar
Lukiw WJ (2012) NF-κB-regulated, pro-inflammatory miRNAs in Alzheimer’s disease. Alzheimers Res Ther 4:47. https://doi.org/10.1186/alzrt150
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiong W, Dong S, Yuan J, Li J, Liu J, Xu X (2012) miRNA-146a promotes proliferation and migration of rat vascular smooth muscle cells in vitro in a NF-κB-dependent manner. Nan Fang Yi Ke Da Xue Xue Bao 32:270–273
CAS
PubMed
Google Scholar
Czubowicz K, Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP (2019) The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1448-3
Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018) IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8:12050. https://doi.org/10.1038/s41598-018-30487-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q, Tan L, Zhang C, Yu JT (2019) Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90:590–598. https://doi.org/10.1136/jnnp-2018-319148
Article
PubMed
Google Scholar
LightSwitch Assay, Switchgear Genomics (an Active Motif Company), Menlo Park CA USA; https://switchgeargenomics.com/resources/science-technology; last accessed 14 March 2019.
Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46:11–19
CAS
Article
Google Scholar
Lukiw WJ (2012) NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 235:484–490. https://doi.org/10.1016/j.expneurol.2011.11.022
CAS
Article
PubMed
Google Scholar
Mosconi L, Rahman A, Diaz I, Wu X, Scheyer O, Hristov HW, Vallabhajosula S, Isaacson RS et al (2018) Increased Alzheimer’s risk during the menopause transition: a 3-year longitudinal brain imaging study. PLoS One 13:e0207885. https://doi.org/10.1371/journal.pone.0207885
CAS
Article
PubMed
PubMed Central
Google Scholar
Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473
CAS
Article
Google Scholar
Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc) 72:578–582
CAS
Article
Google Scholar
Jaber V, Zhao Y, Lukiw WJ (2017) Alterations in micro RNA-messenger RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s disease (AD) hippocampal CA1. J Alzheimers Dis Parkinsonism 7(2):312. https://doi.org/10.4172/2161-0460.1000312
Article
PubMed
PubMed Central
Google Scholar
Alexandrov PN, Zhao Y, Jaber V, Cong L, Lukiw WJ (2017) Deficits in the proline-rich synapse-associated Shank3 protein in multiple neuropsychiatric disorders. Front Neurol 8:670. https://doi.org/10.3389/fneur.2017.00670
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ (2013) Regulation of TREM2 expression by an NF-кB-sensitive miRNA-34a. Neuroreport 24:318–323. https://doi.org/10.1097/WNR.0b013e32835fb6b0
CAS
Article
PubMed
PubMed Central
Google Scholar
Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45:99–107. https://doi.org/10.1016/j.nbd.2011.07.013
CAS
Article
PubMed
Google Scholar
Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ (2014) Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 50:97–106. https://doi.org/10.1007/s12035-013-8595-3
CAS
Article
PubMed
Google Scholar
Zhao Y, Bhattacharjee S, Dua P, Alexandrov PN, Lukiw WJ (2015) microRNA-based biomarkers and the diagnosis of Alzheimer’s disease. Front Neurol 6:162. https://doi.org/10.3389/fneur.2015.00162
Article
PubMed
PubMed Central
Google Scholar
Seipold L, Saftig P (2016) The emerging role of tetraspanins in the proteolytic processing of the amyloid precursor protein. Front Mol Neurosci 9:149. https://doi.org/10.3389/fnmol.2016.00149
CAS
Article
PubMed
PubMed Central
Google Scholar
Termini CM, Gillette JM (2017) Tetraspanins function as regulators of cellular signaling. Front Cell Dev Biol 5:34
Article
Google Scholar
Saint-Pol J, Eschenbrenner E, Dornier E, Boucheix C, Charrin S, Rubinstein E (2017) Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem Soc Trans 45:937–944. https://doi.org/10.1042/BST20160296
CAS
Article
PubMed
Google Scholar
Murru L, Moretto E, Martano G, Passafaro M (2018) Tetraspanins shape the synapse. Mol Cell Neurosci 91:76–81. https://doi.org/10.1016/j.mcn.2018.04.001
CAS
Article
PubMed
Google Scholar
Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kB signaling: 785 and counting. Oncogene. 25:6887–6899
CAS
Article
Google Scholar
Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S (2015) Reactive oxygen species, redox signaling and neuro-inflammation in AD: the NF-κB connection. Curr Top Med Chem 15:446–457
CAS
Article
Google Scholar
Yu L, Li L, Medeiros LJ, Young KH (2017) NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 31:77–92. https://doi.org/10.1016/j.blre.2016.10.001
CAS
Article
PubMed
Google Scholar
Khuda-Bukhsh AR, Das S, Saha SK (2014) Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways. Nutr Cancer 66:194–205. https://doi.org/10.1080/01635581.2014.864420
CAS
Article
PubMed
Google Scholar
Wu J, Ding J, Yang J, Guo X, Zheng Y (2018) MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer. Front Immunol 9:546. https://doi.org/10.3389/fimmu.2018.00546
CAS
Article
PubMed
PubMed Central
Google Scholar
Che J, Stark LA (2018) Crosstalk between NF-κB and nucleoli in the regulation of cellular homeostasis. Cells. 7(10):E157. https://doi.org/10.3390/cells7100157
CAS
Article
Google Scholar
Mendiola AS, Cardona AE (2018) The IL-1β phenomena in neuro-inflammatory diseases. J Neural Transm (Vienna) 125:781–795. https://doi.org/10.1007/s00702-017-1732-9
CAS
Article
Google Scholar
Hong JT (2017) NF-kB as a mediator of brain inflammation in AD. CNS Neurol Disord Drug Targets 18:3–10. https://doi.org/10.2174/1871527316666170807130011
CAS
Article
Google Scholar
Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 18:297–300
CAS
Article
Google Scholar
Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101:1265–1269
CAS
Article
Google Scholar
Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 1:263–274
Google Scholar
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352. https://doi.org/10.1080/15476286.2018.1445959
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Jaber V, Lukiw WJ (2017) Secretory products of the human GI tract and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 7:318. https://doi.org/10.3389/fcimb.2017.00318
CAS
Article
PubMed
PubMed Central
Google Scholar
Talebi A, Rahnema M, Bigdeli MR (2019) Effect of intravenous injection of antagomiR-1 on brain ischemia. Mol Biol Rep 46:1149–1155. https://doi.org/10.1007/s11033-018-04580-y
CAS
Article
PubMed
Google Scholar
Li YY, Alexandrov PN, Pogue AI, Zhao Y, Bhattacharjee S, Lukiw WJ (2012) miRNA-155 upregulation and complement factor H deficits in Down’s syndrome. Neuroreport 23:168–173. https://doi.org/10.1097/WNR.0b013e32834f4eb4
CAS
Article
PubMed
PubMed Central
Google Scholar
Henry RJ, Doran SJ, Barrett JP, Meadows VE, Sabirzhanov B, Stoica BA, Loane DJ, Faden AI (2019) Inhibition of miRNA-155 limits neuro-inflammation and improves functional recovery after experimental traumatic brain injury in mice. Neurotherapeutics 16:216–230. https://doi.org/10.1007/s13311-018-0665-9
CAS
Article
PubMed
Google Scholar