Skip to main content
Log in

Late Cognitive Consequences of Gestational Diabetes to the Offspring, in a New Mouse Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GD) is a form of insulin resistance triggered during gestation, which affects approximately 10% of pregnant women. Although previously considered a transient condition with few long-term consequences, growing evidence suggest that GD may be linked to permanent metabolic and neurologic changes in the offspring. Currently available GD models fail to recapitulate the full spectrum of this disease, thus providing limited information about the true burden of this condition. Here, we describe a new mouse model of GD, based on the administration of an insulin receptor antagonist (S961, 30 nmol/kg s.c. daily) during pregnancy. Pregnant mice developed increased fasting glycemia and glucose intolerance in the absence of maternal obesity, with a return to normoglycemia shortly after parturition. Moreover, we showed that the adult offspring of GD dams presented pronounced metabolic and cognitive dysfunction when exposed to short-term high-fat diet (HFD). Our data demonstrate that S961 administration to pregnant mice comprises a valuable approach to study the complex pathophysiology of GD, as well as strategies focused on prevention and treatment of both the mother and the offspring. Our findings suggest that the offspring of GD mothers are more susceptible to metabolic and cognitive impairments when exposed to high-fat diet later in life, thus indicating that approaches to prevent and treat these late effects should be pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GD:

Gestational diabetes

GTT:

Glucose tolerance test

HFD:

High-fat diet

i.p.:

Intraperitoneal

ND:

Normal diet

NOR:

Novel object recognition

References

  1. Plows JF, Stanley JL, Baker PN, Reynolds C, Vickers M (2018) The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113342

    Article  Google Scholar 

  2. Chen P, Wang S, Ji J, Ge A, Chen C, Zhu Y, Xie N, Wang Y (2015) Risk factors and management of gestational diabetes. Cell Biochem Biophys 71:689–694. https://doi.org/10.1007/s12013-014-0248-2

    Article  CAS  PubMed  Google Scholar 

  3. Zhang C, Rawal S, Chong YS (2016) Risk factors for gestational diabetes: is prevention possible? Diabetologia 59:1385–1390. https://doi.org/10.1007/s00125-016-3979-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeSisto CL, Kim SY, Sharma AJ (2014) Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007-2010. Prev Chronic Dis 11:E104. https://doi.org/10.5888/pcd11.130415

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mitanchez D, Burguet A, Simeoni U (2014) Infants born to mothers with gestational diabetes mellitus: mild neonatal effects, a long-term threat to Global Health. J Pediatr 164:445–450. https://doi.org/10.1016/j.jpeds.2013.10.076

    Article  PubMed  Google Scholar 

  6. Dabelea D (2007) The predisposition to obesity and diabetes in offspring of diabetic mothers. Diabetes Care 30(Suppl 2):S169–S174. https://doi.org/10.2337/dc07-s211

    Article  PubMed  Google Scholar 

  7. Van Lieshout RJ, Voruganti LP (2008) Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J Psychiatry Neurosci 33:395–404

    PubMed  PubMed Central  Google Scholar 

  8. Nahum Sacks K, Friger M, Shoham-Vardi I, Abokaf H, Spiegel E, Sergienko R, Landau D, Sheiner E (2016) Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol 215:380.e1–380.e7. https://doi.org/10.1016/J.AJOG.2016.03.030

    Article  Google Scholar 

  9. Chandna AR, Kuhlmann N, Bryce CA, Greba Q, Campanucci VA, Howland JG (2015) Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases RAGE expression, augments hippocampal excitability, and alters behavior of the offspring. Neuroscience 303:241–260. https://doi.org/10.1016/J.NEUROSCIENCE.2015.06.063

    Article  CAS  PubMed  Google Scholar 

  10. Georgieff MK (2008) The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans 36:1267–1271. https://doi.org/10.1042/BST0361267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33:267–286. https://doi.org/10.1016/j.yfrne.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bilbo SD, Tsang V (2010) Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 24:2104–2115. https://doi.org/10.1096/fj.09-144014

    Article  CAS  PubMed  Google Scholar 

  13. Pasek RC, Gannon M (2013) Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab 305:E1327–E1338. https://doi.org/10.1152/ajpendo.00425.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morisset J, Morisset S, Lauzon K, Côté S, Lainé J, Bourassa J, Lessard M, Echavé V (2000) Pancreatic inflammation, apoptosis, and growth: sequential events after partial pancreatectomy in pigs. Pancreas 21:321–324

    Article  CAS  Google Scholar 

  15. Serradas P, Giroix MH Portha B evaluation of the pancreatic B-cell function in the rat after prenatal exposure to streptozotocin or N-nitrosomethylurea. Diabete Metab 15:30–37

  16. Gutierrez JC, Bahamonde J, Prater MR, Yefi CP, Holladay SD (2010) Production of a type 2 maternal diabetes rodent model using the combination of high-fat diet and moderate dose of streptozocin. Endocr Res 35:59–70. https://doi.org/10.3109/07435801003641939

    Article  CAS  PubMed  Google Scholar 

  17. Dahlhoff M, Pfister S, Blutke A, Rozman J, Klingenspor M, Deutsch MJ, Rathkolb B, Fink B et al (2014) Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring. Biochim Biophys Acta 1842:304–317. https://doi.org/10.1016/j.bbadis.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Kim SY, England L, Sappenfield W et al (2012) Racial/ethnic differences in the percentage of gestational diabetes mellitus cases attributable to overweight and obesity, Florida, 2004-2007. Prev Chronic Dis 9:E88

    PubMed  PubMed Central  Google Scholar 

  19. Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J, Roddick JW Jr (1981) An animal model of gestational diabetes. Am J Obstet Gynecol 141:479–482

    Article  CAS  Google Scholar 

  20. Yamashita H, Shao J, Qiao L, Pagliassotti M, Friedman JE (2003) Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lepr(db/+) mice. Pediatr Res 53:411–418. https://doi.org/10.1203/01.PDR.0000049667.58071.7D

    Article  CAS  PubMed  Google Scholar 

  21. Huang C, Snider F, Cross JC (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 150:1618–1626. https://doi.org/10.1210/en.2008-1003

    Article  CAS  PubMed  Google Scholar 

  22. Kahraman S, Dirice E, De Jesus DF et al (2014) Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring. Am J Physiol Endocrinol Metab 307:E906–E918. https://doi.org/10.1152/ajpendo.00210.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta RK, Gao N, Gorski RK, White P, Hardy OT, Rafiq K, Brestelli JE, Chen G et al (2007) Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev 21:756–769. https://doi.org/10.1101/gad.1535507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Sousa RAL, Torres YS, Figueiredo CP et al (2018) Consequences of gestational diabetes to the brain and behavior of the offspring. An Acad Bras Cienc 90:2279–2291. https://doi.org/10.1590/0001-3765201720170264

    Article  PubMed  Google Scholar 

  25. Vikram A, Jena G (2010) S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats. Biochem Biophys Res Commun 398:260–265. https://doi.org/10.1016/j.bbrc.2010.06.070

    Article  CAS  PubMed  Google Scholar 

  26. Cieniewicz AM, Kirchner T, Hinke SA, Nanjunda R, D’Aquino K, Boayke K, Cooper PR, Perkinson R et al (2017) Novel monoclonal antibody is an allosteric insulin receptor antagonist that induces insulin resistance. Diabetes 66:206–217. https://doi.org/10.2337/db16-0633

    Article  CAS  PubMed  Google Scholar 

  27. Kleiner S, Gomez D, Megra B, Na E, Bhavsar R, Cavino K, Xin Y, Rojas J et al (2018) Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A 115:E7642–E7649. https://doi.org/10.1073/pnas.1721418115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schäffer L, Brand CL, Hansen BF, Ribel U, Shaw AC, Slaaby R, Sturis J (2008) A novel high-affinity peptide antagonist to the insulin receptor. Biochem Biophys Res Commun 376:380–383. https://doi.org/10.1016/J.BBRC.2008.08.151

    Article  PubMed  Google Scholar 

  29. Clarke JR, Lyra E, Silva NM, Figueiredo CP et al (2015) Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7:190–210. https://doi.org/10.15252/emmm.201404183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colomina MT, Albina ML, Domingo JL, Corbella J (1997) Influence of maternal stress on the effects of prenatal exposure to methylmercury and arsenic on postnatal development and behavior in mice: a preliminary evaluation. Physiol Behav 61:455–459

    Article  CAS  Google Scholar 

  31. Santillán ME, Vincenti LM, Martini AC, Fiol de Cuneo M, Ruiz RD, Mangeaud A, Stutz G (2010) Developmental and neurobehavioral effects of perinatal exposure to diets with different omega-6:omega-3 ratios in mice. Nutrition 26:423–431. https://doi.org/10.1016/j.nut.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  32. Zbinden G (1981) Experimental methods in behavioral teratology. Arch Toxikologie 48:69–88. https://doi.org/10.1007/BF00310480

    Article  CAS  Google Scholar 

  33. De Castro VLSS, Destefani CR, Diniz C, Poli P (2007) Evaluation of neurodevelopmental effects on rats exposed prenatally to sulfentrazone. Neurotoxicology 28:1249–1259. https://doi.org/10.1016/j.neuro.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  34. Reis AR, de Azevedo MS, de Souza MA, Lutz ML, Alves MB, Izquierdo I, Cammarota M, Silveira PP et al (2014) Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding. Behav Brain Res 265:216–228. https://doi.org/10.1016/j.bbr.2014.02.036

    Article  CAS  PubMed  Google Scholar 

  35. Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, Barros-Aragão F, Santos LE et al (2017) Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson’s disease-like symptoms in mice. Behav Brain Res 333:150–160. https://doi.org/10.1016/j.bbr.2017.06.047

    Article  CAS  PubMed  Google Scholar 

  36. Kim SY, England L, Wilson HG, Bish C, Satten GA, Dietz P (2010) Percentage of gestational diabetes mellitus attributable to overweight and obesity. Am J Public Health 100:1047–1052. https://doi.org/10.2105/AJPH.2009.172890

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carson MP, Frank MI, Keely E (2013) Original research: postpartum testing rates among women with a history of gestational diabetes--systematic review. Prim Care Diabetes 7:177–186. https://doi.org/10.1016/j.pcd.2013.04.007

    Article  PubMed  Google Scholar 

  38. Francis DD, Champagne FA, Liu D, Meaney MJ (1999) Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann N Y Acad Sci 896:66–84

    Article  CAS  Google Scholar 

  39. Franks B, Champagne FA, Curley JP (2015) Postnatal maternal care predicts divergent weaning strategies and the development of social behavior. Dev Psychobiol 57:809–817. https://doi.org/10.1002/dev.21326

    Article  CAS  PubMed  Google Scholar 

  40. Burlina S, Dalfrà MG, Lapolla A (2017) Short- and long-term consequences for offspring exposed to maternal diabetes: a review. J Matern Fetal Neonatal Med 32:1–8. https://doi.org/10.1080/14767058.2017.1387893

    Article  Google Scholar 

  41. Wicklow BA, Sellers EAC, Sharma AK, Kroeker K, Nickel NC, Philips-Beck W, Shen GX (2018) Association of gestational diabetes and type 2 diabetes exposure in utero with the development of type 2 diabetes in first nations and non-first nations offspring. JAMA Pediatr 172:724–731. https://doi.org/10.1001/jamapediatrics.2018.1201

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gilmartin ABH, Ural SH, Repke JT (2008) Gestational diabetes mellitus. Rev Obstet Gynecol 1:129–134

    PubMed  Google Scholar 

  43. Holemans K, Caluwaerts S, Poston L, Van Assche FA (2004) Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol 190:858–865. https://doi.org/10.1016/j.ajog.2003.09.025

    Article  PubMed  Google Scholar 

  44. Liang C, DeCourcy K, Prater MR (2010) High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism 59:943–950. https://doi.org/10.1016/j.metabol.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  45. Gauguier D, Bihoreau MT, Ktorza A, Berthault MF, Picon L (1990) Inheritance of diabetes mellitus as consequence of gestational hyperglycemia in rats. Diabetes 39:734–739

    Article  CAS  Google Scholar 

  46. Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larqué E (2017) Role of insulin in placental transport of nutrients in gestational diabetes mellitus. Ann Nutr Metab 70:16–25. https://doi.org/10.1159/000455904

    Article  CAS  PubMed  Google Scholar 

  47. Dörner G, Mohnike A (1976) Further evidence for a predominantly maternal transmission of maturity-onset type diabetes. Endokrinologie 1:121–124. https://doi.org/10.1093/cercor/bhw375

    Article  Google Scholar 

  48. Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Diabetes Care 18:611–617

    Article  CAS  Google Scholar 

  49. Poston L, Health F (2010) Best Practice & Research Clinical Endocrinology & Metabolism Developmental programming and diabetes – the human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab 24:541–552. https://doi.org/10.1016/j.beem.2010.05.007

    Article  PubMed  Google Scholar 

  50. Poston L (2011) Intergenerational transmission of insulin resistance and type 2 diabetes. Prog Biophys Mol Biol 106:315–322. https://doi.org/10.1016/j.pbiomolbio.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  51. Daraki V, Roumeliotaki T, Koutra K, Georgiou V, Kampouri M, Kyriklaki A, Vafeiadi M, Papavasiliou S et al (2017) Effect of parental obesity and gestational diabetes on child neuropsychological and behavioral development at 4 years of age: the Rhea mother-child cohort, Crete, Greece. Eur Child Adolesc Psychiatry 26:1–12. https://doi.org/10.1007/s00787-016-0934-2

    Article  Google Scholar 

  52. Yessoufou A, Moutairou K (2011) Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory.”. Exp Diabetes Res 2011:1–12. https://doi.org/10.1155/2011/218598

    Article  Google Scholar 

  53. Garcia-vargas L, Addison SS (2012) Gestational diabetes and the offspring: implications in the development of the cardiorenal metabolic syndrome in offspring. Cardiorenal Med 65212:134–142. https://doi.org/10.1159/000337734

    Article  CAS  Google Scholar 

  54. Li H-P, Chen X, Li M-Q (2013) Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol 6:650–659

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang X, Qin Q, Xie X, He P (2015) Protective effect of sRAGE on fetal development in pregnant rats with gestational diabetes mellitus. Cell Biochem Biophys 71:549–556. https://doi.org/10.1007/s12013-014-0233-9

    Article  CAS  PubMed  Google Scholar 

  56. DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA (2005) Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol 47:525–531

    Article  Google Scholar 

  57. Torres-Espinola FJ, Berglund SK, García-Valdés LM, Segura MT, Jerez A, Campos D, Moreno-Torres R, Rueda R et al (2015) Maternal obesity, overweight and gestational diabetes affect the offspring neurodevelopment at 6 and 18 months of age--a follow up from the PREOBE cohort. PLoS One 10:e0133010. https://doi.org/10.1371/journal.pone.0133010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Riggins T, Bauer PJ, Georgieff MK, Nelson CA (2010) Declarative memory performance in infants of diabetic mothers. Adv Child Dev Behav 38:73–110

    Article  Google Scholar 

  59. Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, Chen CT, Liang KC et al (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18:463–469. https://doi.org/10.1038/oby.2009.273

    Article  CAS  Google Scholar 

  60. Sims-Robinson C, Bakeman A, Bruno E et al (2016) Dietary reversal ameliorates short- and long-term memory deficits induced by high-fat diet early in life. PLoS One 11:e0163883. https://doi.org/10.1371/journal.pone.0163883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR (2017) High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta 1863:499–508. https://doi.org/10.1016/j.bbadis.2016.10.006

    Article  CAS  Google Scholar 

  62. Walker JM, Dixit S, Saulsberry AC, May JM, Harrison FE (2017) Reversal of high fat diet-induced obesity improves glucose tolerance, inflammatory response, β-amyloid accumulation and cognitive decline in the APP/PSEN1 mouse model of Alzheimer’s disease. Neurobiol Dis 100:87–98. https://doi.org/10.1016/j.nbd.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van der Kooij MA, Grosse J, Zanoletti O et al (2015) The effects of stress during early postnatal periods on behavior and hippocampal neuroplasticity markers in adult male mice. Neuroscience 311:508–518. https://doi.org/10.1016/j.neuroscience.2015.10.058

    Article  CAS  PubMed  Google Scholar 

  64. Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RDS, Passos GF, Calixto JB (2010) The role of TNF-α signaling pathway on COX-2 upregulation and cognitive decline induced by β-amyloid peptide. Behav Brain Res 209:165–173. https://doi.org/10.1016/j.bbr.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  65. Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, Kolpakov MA, Bashkirova YV et al (2019) Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol 56:1883–1896. https://doi.org/10.1007/s12035-018-1195-5

    Article  CAS  PubMed  Google Scholar 

  66. Wadhwa M, Prabhakar A, Ray K, Roy K, Kumari P, Jha PK, Kishore K, Kumar S et al (2017) Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation 14(222):222. https://doi.org/10.1186/s12974-017-0998-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cabrera-Pastor A, Hernandez-Rabaza V, Taoro-Gonzalez L, Balzano T, Llansola M, Felipo V (2016) In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain Behav Immun 57:360–370. https://doi.org/10.1016/j.bbi.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  68. Neves FS, Marques PT, Barros-Aragão F et al (2018) Brain-defective insulin signaling is associated to late cognitive impairment in post-septic mice. Mol Neurobiol 55:435–444. https://doi.org/10.1007/s12035-016-0307-3

    Article  CAS  PubMed  Google Scholar 

  69. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 122:1339–1353. https://doi.org/10.1172/JCI57256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Melo AM, Benatti RO, Ignacio-Souza LM, Okino C, Torsoni AS, Milanski M, Velloso LA, Torsoni MA (2014) Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism 63:682–692. https://doi.org/10.1016/j.metabol.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  71. Vuong B, Odero G, Rozbacher S, Stevenson M, Kereliuk SM, Pereira TJ, Dolinsky VW, Kauppinen TM (2017) Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. J Neuroinflammation 14(80):80. https://doi.org/10.1186/s12974-017-0859-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hami J, Sadr-Nabavi A, Sankian M, Balali-Mood M, Haghir H (2013) The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct 218:73–84. https://doi.org/10.1007/s00429-011-0377-y

    Article  CAS  PubMed  Google Scholar 

  73. Steculorum SM, Bouret SG (2011) Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152:4171–4179. https://doi.org/10.1210/en.2011-1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Melissa Florence, Jadilma Ferreira, and Ana Claudia Rangel.

Funding Sources

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (E.V.L., C.P.F., G.F.P., J.R.C.), Conselho Nacional de Desenvolvimento Científico e Tecnológico (C.P.F., J.R.C.), Institutos Nacionais de Pesquisa - Inovação em Medicamentos e Identificação de Novos Alvos Terapêuticos (C.P.F., G.F.P.), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (R.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia R. Clarke.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, R.A., de Lima, E.V., da Silva, T.P. et al. Late Cognitive Consequences of Gestational Diabetes to the Offspring, in a New Mouse Model. Mol Neurobiol 56, 7754–7764 (2019). https://doi.org/10.1007/s12035-019-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1624-0

Keywords

Navigation