Skip to main content

Advertisement

Log in

Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan’s analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney U test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CINP:

chemotherapy-induced peripheral neuropathy

AT1R:

angiotensin II type 1 receptor

PINP:

paclitaxel-induced neuropathic pain

DRG:

dorsal root ganglion

IL-1β:

interleukin 1β

TNF-α:

tumor necrosis factor α

DMSO:

dimethyl sulfoxide

PBS:

phosphate-buffered saline

MCP-1:

monocyte chemoattractant protein 1

GAPDH:

glyceraldehydes-3-phosphate dehydrogenase

GFAP:

glial fibrillary acidic protein

DAPI:

4′,6-diamidino-2-phenylindole

p-NFκB:

phosphorylated nuclear factor kappa B

NFκB:

nuclear factor kappa B

References

  1. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155(12):2461–2470. https://doi.org/10.1016/j.pain.2014.09.020

    Article  PubMed  Google Scholar 

  2. Yazdani S, Abdi S (2014) Brief review: pain management for cancer survivors: challenges and opportunities. Can J Anaesth 61(8):745–753. https://doi.org/10.1007/s12630-014-0170-5

    Article  PubMed  Google Scholar 

  3. Mols F, Beijers T, Vreugdenhil G, van de Poll-Franse L (2014) Chemotherapy-induced peripheral neuropathy and its association with quality of life: a systematic review. Support Care Cancer 22 (8):2261–2269. doi:https://doi.org/10.1007/s00520-014-2255-7

    Article  Google Scholar 

  4. Vyas DM, Kadow JF (1995) Paclitaxel: a unique tubulin interacting anticancer agent. Prog Med Chem 32:289–337

    Article  CAS  Google Scholar 

  5. Balayssac D, Ferrier J, Descoeur J, Ling B, Pezet D, Eschalier A, Authier N (2011) Chemotherapy-induced peripheral neuropathies: from clinical relevance to preclinical evidence. Expert Opin Drug Saf 10(3):407–417. https://doi.org/10.1517/14740338.2011.543417

    Article  CAS  PubMed  Google Scholar 

  6. Sisignano M, Baron R, Scholich K, Geisslinger G (2014) Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 10(12):694–707. https://doi.org/10.1038/nrneurol.2014.211

    Article  CAS  PubMed  Google Scholar 

  7. Rao RD, Michalak JC, Sloan JA, Loprinzi CL, Soori GS, Nikcevich DA, Warner DO, Novotny P et al (2007) Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110(9):2110–2118. https://doi.org/10.1002/cncr.23008

    Article  CAS  PubMed  Google Scholar 

  8. Kautio AL, Haanpaa M, Leminen A, Kalso E, Kautiainen H, Saarto T (2009) Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. Anticancer Res 29(7):2601–2606

    CAS  PubMed  Google Scholar 

  9. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251–287

    Article  CAS  Google Scholar 

  10. Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803

    Article  CAS  Google Scholar 

  11. Irvine RJ, White JM (1997) The effects of central and peripheral angiotensin on hypertension and nociception in rats. Pharmacol Biochem Behav 57(1–2):37–41

    Article  CAS  Google Scholar 

  12. Nemoto W, Nakagawasai O, Yaoita F, Kanno SI, Yomogida S, Ishikawa M, Tadano T, Tan-No K (2013) Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice. Mol Pain 9(1):1744-8069-9-38. https://doi.org/10.1186/1744-8069-9-38

    Article  CAS  Google Scholar 

  13. Pavel J, Oroszova Z, Hricova L, Lukacova N (2013) Effect of subpressor dose of angiotensin II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells in the rat dorsal root ganglia. Cell Mol Neurobiol 33(5):681–688. https://doi.org/10.1007/s10571-013-9934-7

    Article  CAS  PubMed  Google Scholar 

  14. Nemoto W, Ogata Y, Nakagawasai O, Yaoita F, Tanado T, Tan-No K (2015) The intrathecal administration of losartan, an AT1 receptor antagonist, produces an antinociceptive effect through the inhibiton of p38 MAPK phosphorylation in the mouse formalin test. Neurosci Lett 585:17–22. https://doi.org/10.1016/j.neulet.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  15. Costa AC, Romero TR, Pacheco DF, Perez AC, Savernini A, Santos RR, Duarte ID (2014) Participation of AT1 and mas receptors in the modulation of inflammatory pain. Peptides 61:17–22. https://doi.org/10.1016/j.peptides.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  16. Ogata Y, Nemoto W, Nakagawasai O, Yamagata R, Tadano T, Tan-No K (2016) Involvement of spinal angiotensin II system in streptozotocin-induced diabetic neuropathic pain in mice. Mol Pharmacol 90(3):205–213. https://doi.org/10.1124/mol.116.104133

    Article  CAS  PubMed  Google Scholar 

  17. Kim HK, Zhang YP, Gwak YS, Abdi S (2010) Phenyl N-tert-butylnitrone, a free radical scavenger, reduces mechanical allodynia in chemotherapy-induced neuropathic pain in rats. Anesthesiology 112(2):432–439. https://doi.org/10.1097/ALN.0b013e3181ca31bd

    Article  CAS  PubMed  Google Scholar 

  18. Chaplan SR, Bach F, Pogrel J, Chung J, Yaksh T (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  Google Scholar 

  19. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20(1):441–462

    Article  CAS  Google Scholar 

  20. Kim HK, Park SK, Zhou J-L, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111 (1):116–124

    Article  CAS  Google Scholar 

  21. Kim HK, Hwang SH, Oh E, Abdi S (2017) Rolipram, a selective phosphodiesterase 4 inhibitor, ameliorates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain through inhibition of inflammatory cytokines in the dorsal root ganglion. Front Pharmacol 8(885). https://doi.org/10.3389/fphar.2017.00885

  22. Kim HK, Hwang SH, Abdi S (2016) Tempol ameliorates and prevents mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Front Pharmacol 7:532. https://doi.org/10.3389/fphar.2016.00532

    Article  CAS  PubMed  Google Scholar 

  23. Kim HK, Hwang SH, Lee SO, Kim SH, Abdi S (2016) Pentoxifylline ameliorates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Pain Physician 19(4):E589–E600

    PubMed  Google Scholar 

  24. Duraikannu A, Martinez JA, Chandrasekhar A, Zochodne DW (2018) Expression and manipulation of the APC-beta-catenin pathway during peripheral neuron regeneration. Sci Rep 8(1):13197. https://doi.org/10.1038/s41598-018-31167-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu Z, Xu N, Zhang N, Xiong Y, Wang Z, Liang S, Zhao D, Huang F et al (2019) Repair of peripheral nerve sensory impairments via the transplantation of bone marrow neural tissue-committed stem cell-derived sensory neurons. Cell Mol Neurobiol 39:341–353. https://doi.org/10.1007/s10571-019-00650-2

    Article  CAS  PubMed  Google Scholar 

  26. Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57(2):313–370

    Article  CAS  Google Scholar 

  27. Patil J, Schwab A, Nussberger J, Schaffner T, Saavedra JM, Imboden H (2010) Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. Regul Pept 162(1–3):90–98. https://doi.org/10.1016/j.regpep.2010.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oroszova Z, Hricova L, Stropkovska A, Lukacova N, Pavel J (2017) The characterization of AT1 expression in the dorsal root ganglia after chronic constriction injury. Cell Mol Neurobiol 37(3):545–554. https://doi.org/10.1007/s10571-016-0396-6

    Article  CAS  PubMed  Google Scholar 

  29. Kalynovska N, Diallo M, Palecek J (2019) Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci 220:147–155. https://doi.org/10.1016/j.lfs.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  30. Oono Y, Baad-Hansen L, Wang K, Arendt-Nielsen L, Svensson P (2013) Effect of conditioned pain modulation on trigeminal somatosensory function evaluated by quantitative sensory testing. Pain 154(12):2684–2690. https://doi.org/10.1016/j.pain.2013.07.049

    Article  PubMed  Google Scholar 

  31. Hou S, Huh B, Kim HK, Kim KH, Abdi S (2018) Treatment of chemotherapy-induced peripheral neuropathy: systematic review and recommendations. Pain Physician 21(6):571–592

    PubMed  Google Scholar 

  32. Kim W, Chung Y, Choi S, Min BI, Kim SK (2017) Duloxetine protects against oxaliplatin-induced neuropathic pain and spinal neuron hyperexcitability in rodents. Int J Mol Sci 18(12). https://doi.org/10.3390/ijms18122626

    Article  Google Scholar 

  33. Baumann M, Janssen BJ, Hermans JJ, Peutz-Kootstra C, Witzke O, Smits JF, Struijker Boudier HA (2007) Transient AT1 receptor-inhibition in prehypertensive spontaneously hypertensive rats results in maintained cardiac protection until advanced age. J Hypertens 25(1):207–215. https://doi.org/10.1097/HJH.0b013e3280102bff

    Article  CAS  PubMed  Google Scholar 

  34. Ellis A, Bennett DL (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111 (1):26–37. doi:https://doi.org/10.1093/bja/aet128

    Article  CAS  Google Scholar 

  35. Ebersberger A (2018) The analgesic potential of cytokine neutralization with biologicals. Eur J Pharmacol 835:19–30. https://doi.org/10.1016/j.ejphar.2018.07.040

    Article  CAS  PubMed  Google Scholar 

  36. Kim HK, Kwon JY, Yoo C, Abdi S (2015) The analgesic effect of rolipram, a phosphodiesterase 4 inhibitor, on chemotherapy-induced neuropathic pain in rats. Anesth Analg 121(3):822–828. https://doi.org/10.1213/ANE.0000000000000853

    Article  CAS  PubMed  Google Scholar 

  37. Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370(1):1–18. https://doi.org/10.1042/BJ20021698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, Zhou X-D, Qiu Y et al (2003) A highly selective inhibitor of IκB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum 48(9):2652–2659. https://doi.org/10.1002/art.11131

    Article  CAS  PubMed  Google Scholar 

  39. Pollock G, Pennypacker KR, Mémet S, Israël A, Saporta S (2005) Activation of NF-κB in the mouse spinal cord following sciatic nerve transection. Exp Brain Res 165(4):470–477. https://doi.org/10.1007/s00221-005-2318-6

    Article  CAS  PubMed  Google Scholar 

  40. Nonaka M, Huang ZM (1990) Interleukin-1-mediated enhancement of mouse factor B gene expression via NF kappa B-like hepatoma nuclear factor. Mol Cell Biol 10(12):6283–6289

    Article  CAS  Google Scholar 

  41. Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 92(20):9328–9332

    Article  CAS  Google Scholar 

  42. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326. https://doi.org/10.1089/jir.2008.0027

    Article  CAS  Google Scholar 

  43. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M et al (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65

    Article  Google Scholar 

  44. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 29(7):367–374. https://doi.org/10.1016/j.tips.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  45. Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, Zhou LJ, Liu XG (2016) Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain 12:174480691664678. https://doi.org/10.1177/1744806916646784

    Article  CAS  Google Scholar 

  46. Stemkowski PL, Garcia-Caballero A, Gadotti VM, M'Dahoma S, Chen L, Souza IA, Zamponi GW (2017) Identification of interleukin-1 beta as a key mediator in the upregulation of Cav3.2-USP5 interactions in the pain pathway. Mol Pain 13:1744806917724698. https://doi.org/10.1177/1744806917724698

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H et al (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311):995–1003. https://doi.org/10.1016/S0140-6736(02)08089-3

    Article  PubMed  Google Scholar 

  48. Boersma C, Atthobari J, Gansevoort RT, de Jong-Van den Berg LT, de Jong PE, de Zeeuw D, Annemans LJ, Postma MJ (2006) Pharmacoeconomics of angiotensin II antagonists in type 2 diabetic patients with nephropathy: implications for decision making Pharmacoeconomics 24 (6):523–535

  49. Irvine RJ, White JM, Head RJ (1995) The renin angiotensin system and nociception in spontaneously hypertensive rats. Life Sci 56(13):1073–1078

    Article  CAS  Google Scholar 

  50. Sitsen JMA, Wd J (1984) Observations on pain perception and hypertension in spontaneously hypertensive rats. Clin Exp Hypertens A 6(7):1345–1356. https://doi.org/10.3109/10641968409039601

    Article  CAS  PubMed  Google Scholar 

  51. Zhu H, Tan L, Li Y, Li J, Qiu M, Li L, Zhang M, Liang M et al (2017) Increased apoptosis in the paraventricular nucleus mediated by AT1R/Ras/ERK1/2 signaling results in sympathetic hyperactivity and renovascular hypertension in rats after kidney injury. Front Physiol 8:41. https://doi.org/10.3389/fphys.2017.00041

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liang S, Kisseleva T, Brenner DA (2016) The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol 7:17. https://doi.org/10.3389/fphys.2016.00017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to S.A. from the Peggy and Avinash Ahuja Foundation and the Helen Buchanan and Stanley Joseph Seeger Endowment at The University of Texas MD Anderson Cancer Center. The authors thank Joe Munch (Department of Scientific Publications, The University of Texas MD Anderson Cancer Center) for the editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

EK: conception, design, data acquisition, analysis, interpretation, and writing of the manuscript. S-HH: design, data acquisition, analysis, and interpretation and preparation of the manuscript. H-KK: conception and interpretation, and preparation of the manuscript. SA: conception, design, interpretation, and writing of the manuscript. HKK: conception, design, data acquisition, analysis, interpretation, and writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hee Kee Kim.

Ethics declarations

The animals used in the experiment were approved by the Institutional Animal Care and Use Committee (IACUC) of The University of Texas MD Anderson Cancer Center. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Hwang, SH., Kim, HK. et al. Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol Neurobiol 56, 7408–7419 (2019). https://doi.org/10.1007/s12035-019-1616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1616-0

Keywords

Navigation