Skip to main content

Advertisement

Log in

Prion Efficiently Replicates in α-Synuclein Knockout Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion diseases are a group of neurodegenerative disorders associated with the conformational conversion of the cellular prion protein (PrPC) into an abnormal misfolded form named PrPSc. Other than accumulating in the brain, PrPSc can bind PrPC and force it to change conformation to PrPSc. The exact mechanism which underlies the process of PrPC/PrPSc conversion still needs to be defined and many molecules or cofactors might be involved. Several studies have documented an important role of PrPC to act as receptor for abnormally folded forms of α-synuclein which are responsible of a group of diseases known as synucleinopathies. The presence of PrPC was required to promote efficient internalization and spreading of abnormal α-synuclein between cells. In this work, we have assessed whether α-synuclein exerts any role in PrPSc conversion and propagation either in vitro or in vivo. Indeed, understanding the mechanism of PrPC/PrPSc conversion and the identification of cofactors involved in this process is crucial for developing new therapeutic strategies. Our results showed that PrPSc was able to efficiently propagate in the brain of animals even in the absence of α-synuclein thus suggesting that this protein did not act as key modulator of prion propagation. Thus, α-synuclein might take part in this process but is not specifically required for sustaining prion conversion and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chesebro B (1999) Prion protein and the transmissible spongiform encephalopathy diseases. Neuron 24(3):503–506

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi A (2006) Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis. J Neurochem 97(6):1726–1739

    Article  CAS  PubMed  Google Scholar 

  3. Wulf MA, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein: an update. BMC Biol 15(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347

    Article  CAS  PubMed  Google Scholar 

  6. Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL et al (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63(4):673–686

    Article  CAS  PubMed  Google Scholar 

  7. McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35(1):57–62

    Article  CAS  PubMed  Google Scholar 

  8. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalili-Shirazi A, Summers L, Linehan J, Mallinson G, Anstee D, Hawke S, Jackson GS, Collinge J (2005) PrP glycoforms are associated in a strain-specific ratio in native PrPSc. J Gen Virol 86(Pt 9):2635–2644

    Article  CAS  PubMed  Google Scholar 

  10. Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton DR, DeArmond SJ, Prusiner SB et al (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34(6):921–932

    Article  CAS  PubMed  Google Scholar 

  11. Cescatti M, Saverioni D, Capellari S, Tagliavini F, Kitamoto T, Ironside J, Giese A, Parchi P (2016) Analysis of conformational stability of abnormal prion protein aggregates across the spectrum of Creutzfeldt-Jakob disease prions. J Virol 90(14):6244–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fraser H (1993) Diversity in the neuropathology of scrapie-like diseases in animals. Br Med Bull 49(4):792–809

    Article  CAS  PubMed  Google Scholar 

  13. DeArmond SJ, Sanchez H, Yehiely F, Qiu Y, Ninchak-Casey A, Daggett V, Camerino AP, Cayetano J et al (1997) Selective neuronal targeting in prion disease. Neuron 19(6):1337–1348

    Article  CAS  PubMed  Google Scholar 

  14. Budka H (2003) Neuropathology of prion diseases. Br Med Bull 66:121–130

    Article  CAS  PubMed  Google Scholar 

  15. Fraser H, Dickinson AG (1968) The sequential development of the brain lesion of scrapie in three strains of mice. J Comp Pathol 78(3):301–311

    Article  CAS  PubMed  Google Scholar 

  16. Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172(3):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dickinson AG, Meikle VM (1971) Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol Gen Genet 112(1):73–79

    Article  CAS  PubMed  Google Scholar 

  18. Hughes D, Halliday M (2017) What is our current understanding of PrP(Sc)-associated neurotoxicity and its molecular underpinnings? Pathogens 6(4)

  19. Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andreoletti O, Leblanc P (2018) Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci

  20. Gousset K, Zurzolo C (2009) Tunnelling nanotubes: a highway for prion spreading? Prion 3(2):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nussbaum-Krammer CI, Park KW, Li L, Melki R, Morimoto RI (2013) Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoS Genet 9(3):e1003351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452(1):1–17

    Article  CAS  PubMed  Google Scholar 

  23. Hartmann A, Muth C, Dabrowski O, Krasemann S, Glatzel M (2017) Exosomes and the prion protein: more than one truth. Front Neurosci 11:194

    Article  PubMed  PubMed Central  Google Scholar 

  24. Emamzadeh FN (2016) Alpha-synuclein structure, functions, and interactions. J Res Med Sci 21:29

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu S, Li X, Liu G, Han J, Zhang C, Li Y, Xu S, Liu C et al (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 145(2):539–555

    Article  CAS  PubMed  Google Scholar 

  26. Totterdell S, Meredith GE (2005) Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 135(3):907–913

    Article  CAS  PubMed  Google Scholar 

  27. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19(14):5782–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen RH, Wislet-Gendebien S, Samuel F, Visanji NP, Zhang G, Marsilio D, Langman T, Fraser PE et al (2013) Alpha-synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem 288(11):7438–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118(Pt 15):3523–3530

    Article  CAS  PubMed  Google Scholar 

  30. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, Jackson CL (2011) Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194(1):89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Witt SN (2010) Hsp70 molecular chaperones and Parkinson's disease. Biopolymers 93(3):218–228

    Article  CAS  PubMed  Google Scholar 

  33. Witt SN (2013) Molecular chaperones, alpha-synuclein, and neurodegeneration. Mol Neurobiol 47(2):552–560

    Article  CAS  PubMed  Google Scholar 

  34. Rekas A, Ahn KJ, Kim J, Carver JA (2012) The chaperone activity of alpha-synuclein: utilizing deletion mutants to map its interaction with target proteins. Proteins 80(5):1316–1325

    Article  CAS  PubMed  Google Scholar 

  35. Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23(8):3095–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL (2006) Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 45(26):8135–8142

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Lee YJ, Liou LC, Ren Q, Zhang Z, Wang S, Witt SN (2011) Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast. Hum Mol Genet 20(17):3401–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  39. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208

    Article  CAS  PubMed  Google Scholar 

  40. Aulic S, Le TT, Moda F, Abounit S, Corvaglia S, Casalis L, Gustincich S, Zurzolo C et al (2014) Defined alpha-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neurosci 15:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VMY (2012) Pathological alpha-Synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136(Pt 4):1128–1138

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M (2018) Potent prion-like behaviors of pathogenic alpha-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 6(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Aulic S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B, De Cecco E et al (2017) Alpha-synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci Rep 7(1):10050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, Garcia-Aznar JM, Vila M, Samitier J et al (2018) Involvement of cellular prion protein in alpha-synuclein transport in neurons. Mol Neurobiol 55(3):1847–1860

    Article  CAS  PubMed  Google Scholar 

  47. Katorcha E, Makarava N, Lee YJ, Lindberg I, Monteiro MJ, Kovacs GG, Baskakov IV (2017) Cross-seeding of prions by aggregated alpha-synuclein leads to transmissible spongiform encephalopathy. PLoS Pathog 13(8):e1006563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM (2000) Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol 74(12):5542–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bistaffa E, Moda F, Virgilio T, Campagnani I, De Luca CMG, Rossi M, Salzano G, Giaccone G et al (2018) Synthetic prion selection and adaptation. Mol Neurobiol

  50. Baskakov IV (2014) The many shades of prion strain adaptation. Prion 8(2)

    Article  PubMed Central  Google Scholar 

  51. Katorcha E, Gonzalez-Montalban N, Makarava N, Kovacs GG, Baskakov IV (2018) Prion replication environment defines the fate of prion strain adaptation. PLoS Pathog 14(6):e1007093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813

    Article  CAS  PubMed  Google Scholar 

  54. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 99(22):14524–14529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383–396

    Article  CAS  PubMed  Google Scholar 

  57. Lindberg I, Shorter J, Wiseman RL, Chiti F, Dickey CA, McLean PJ (2015) Chaperones in neurodegeneration. J Neurosci 35(41):13853–13859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. St Martin JL, Klucken J, Outeiro TF, Nguyen P, Keller-McGandy C, Cantuti-Castelvetri I, Grammatopoulos TN, Standaert DG et al (2007) Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J Neurochem 100(6):1449–1457

    CAS  PubMed  Google Scholar 

  59. Nakamura S, Ono F, Hamano M, Odagiri K, Kubo M, Komatsuzaki K, Terao K, Shinagawa M et al (2000) Immunohistochemical detection of apolipoprotein E within prion-associated lesions in squirrel monkey brains. Acta Neuropathol 100(4):365–370

    Article  CAS  PubMed  Google Scholar 

  60. Hochstrasser DF, Frutiger S, Wilkins MR, Hughes G, Sanchez JC (1997) Elevation of apolipoprotein E in the CSF of cattle affected by BSE. FEBS Lett 416(2):161–163

    Article  CAS  PubMed  Google Scholar 

  61. Skinner PJ, Abbassi H, Chesebro B, Race RE, Reilly C, Haase AT (2006) Gene expression alterations in brains of mice infected with three strains of scrapie. BMC Genomics 7:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Van Everbroeck B, Croes EA, Pals P, Dermaut B, Jansen G, van Duijn CM, Cruts M, Van Broeckhoven C et al (2001) Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob disease phenotype. Neurosci Lett 313(1–2):69–72

    Article  PubMed  Google Scholar 

  63. Baumann MH, Kallijarvi J, Lankinen H, Soto C, Haltia M (2000) Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides. Biochem J 349(Pt 1):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moore RA, Timmes AG, Wilmarth PA, Safronetz D, Priola SA (2011) Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure. Proteomics 11(19):3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M Proteolytic processing of the prion protein in health and disease. Am J Neurodegener Dis 2012(1, 1):15–31

  66. Iida T, Doh-ura K, Kawashima T, Abe H, Iwaki T (2001) An atypical case of sporadic Creutzfeldt-Jakob disease with Parkinson's disease. Neuropathology 21(4):294–297

    Article  CAS  PubMed  Google Scholar 

  67. Haik S, Privat N, Adjou KT, Sazdovitch V, Dormont D, Duyckaerts C, Hauw JJ (2002) Alpha-synuclein-immunoreactive deposits in human and animal prion diseases. Acta Neuropathol 103(5):516–520

    Article  CAS  PubMed  Google Scholar 

  68. Adjou KT, Allix S, Ouidja MO, Backer S, Couquet C, Cornuejols MJ, Deslys JP, Brugere H et al (2007) Alpha-synuclein accumulates in the brain of scrapie-affected sheep and goats. J Comp Pathol 137(1):78–81

    Article  CAS  PubMed  Google Scholar 

  69. La Vitola P, Beeg M, Balducci C, Santamaria G, Restelli E, Colombo L, Caldinelli L, Pollegioni L et al (2019) Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain 142(2):249–254

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Associazione Italiana Encefalopatie da Prioni (AIEnP).

Funding

This work was supported by the Italian Ministry of Health (RC) to F.M., Italian Ministry of Health to F.T., and Associazione Italiana Encefalopatie da Prioni (AIEnP).

Author information

Authors and Affiliations

Authors

Contributions

E.B. performed most of the experiments; M.R., C.D.L., performed part of the biochemical analysis; F.C., O.C. performed part of the histological analysis; I.C. was in charge of the animal care and sacrifice; F.T. and G.L. contributed in planning the experiments and in analyzing the data; and G.G. and F.M. supervised the work, analyzed the data and prepared the final version of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabio Moda.

Ethics declarations

The study, including its Ethics aspects, was approved by the Italian Ministry of Health (Permit Number, NP-02-13).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(JPG 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistaffa, E., Rossi, M., De Luca, C.M.G. et al. Prion Efficiently Replicates in α-Synuclein Knockout Mice. Mol Neurobiol 56, 7448–7457 (2019). https://doi.org/10.1007/s12035-019-1602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1602-6

Keywords

Navigation