Advertisement

Understanding the Scientific Basis of Post-traumatic Stress Disorder (PTSD): Precision Behavioral Management Overrides Stigmatization

  • Kenneth BlumEmail author
  • M. C. Gondré-Lewis
  • E. J. Modestino
  • L. Lott
  • D. Baron
  • D. Siwicki
  • T. McLaughlin
  • A. Howeedy
  • M. H. Krengel
  • M. Oscar-Berman
  • P. K. Thanos
  • I. Elman
  • M. Hauser
  • L. Fried
  • A. Bowirrat
  • R. D. Badgaiyan
Article

Abstract

Post-traumatic stress disorder (PTSD) is a severe polygenic disorder triggered by environmental factors. Many polymorphic genes, particularly the genetic determinants of hypodopaminergia (low dopamine function), associate with a predisposition to PTSD as well as substance use disorder. Support from the National Institutes of Health for neuroimaging research and molecular, genetic applied technologies has improved understanding of brain reward circuitry functions that have inspired the development of new innovative approaches to their early diagnosis and treatment of some PTSD symptomatology and addiction. This review presents psychosocial and genetic evidence that vulnerability or resilience to PTSD can theoretically be impacted by dopamine regulation. From a neuroscience perspective, dopamine is widely accepted as a major neurotransmitter. Questions about how to modulate dopamine clinically in order to treat and prevent PTSD and other types of reward deficiency disorders remain. Identification of genetic variations associated with the relevant genotype–phenotype relationships can be characterized using the Genetic Addiction Risk Score (GARS®) and psychosocial tools. Development of an advanced genetic panel is under study and will be based on a new array of genes linked to PTSD. However, for now, the recommendation is that enlistees for military duty be given the opportunity to voluntarily pre-test for risk of PTSD with GARS, before exposure to environmental triggers or upon return from deployment as part of PTSD management. Dopamine homeostasis may be achieved via customization of neuronutrient supplementation “Precision Behavioral Management” (PBM™) based on GARS test values and other pro-dopamine regulation interventions like exercise, mindfulness, biosensor tracking, and meditation.

Keywords

Post-traumatic stress disorder (PTSD) Genetic addiction risk score (GARS™) Pro-dopamine regulation (KB220PAM) Hypodopaminergia Neuronutrient 

Notes

Acknowledgments

We acknowledge editorial assistance from Margaret Madigan.

Funding Information

Research directed toward improving substance use disorders, especially in under-served populations, is the basis of an NIH grant awarded to Dr. Kenneth Blum and Marjorie Gondré-Lewis (Drs. Blum and Gondré-Lewis are the recipients of 1R41MD012318-01/MD/NIMHD NIH HHS/USA). Dr. R.D. Badgaiyan is partially supported by the National Institutes of Health grants 1R01NS073884 and 1R21MH073624; and VA Merit Review Awards CX000479 and CX000780. Dr. P. K. Thanos is the recipient of R01HD70888-01A1.

References

  1. 1.
    Bowirrat A, Chen TJ, Blum K, Madigan M, Bailey JA, Chuan Chen AL, Downs BW, Braverman ER et al (2010) Neuro-psychopharmacogenetics and neurological antecedents of posttraumatic stress disorder: unlocking the mysteries of resilience and vulnerability. Curr Neuropharmacol 8(4):335–358.  https://doi.org/10.2174/157015910793358123 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jellinek E (1960) The disease concept of alcoholism. College and University Press, Italy, New HeavenCrossRefGoogle Scholar
  3. 3.
    Davis VE, Walsh MJ (1970) Alcohol addiction and tetrahydropapaveroline. Science 169(3950):1105–1106PubMedGoogle Scholar
  4. 4.
    Hamilton MG, Blum K, Hirst M (1978) Identification of an isoquinoline alkaloid after chronic exposure to ethanol. Alcohol Clin Exp Res 2(2):133–137CrossRefGoogle Scholar
  5. 5.
    Collins MA, Kahn AJ (1982) Attraction to ethanol solutions in mice: induction by a tetrahydroisoquinoline derivative of L-DOPA. Subst Alcohol Actions Misuse 3(5):299–302PubMedGoogle Scholar
  6. 6.
    Cohen G, Collins M (1970) Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167(3926):1749–1751CrossRefGoogle Scholar
  7. 7.
    Blum K, Hamilton MG, Hirst M, Wallace JE (1978) Putative role of isoquinoline alkaloids in alcoholism: a link to opiates. Alcohol Clin Exp Res 2(2):113–120CrossRefGoogle Scholar
  8. 8.
    Blum K, Sheridan PJ, Wood RC, Braverman ER, Chen TJ, Cull JG, Comings DE (1996) The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J R Soc Med 89(7):396–400CrossRefGoogle Scholar
  9. 9.
    Blum K (2017) Reward deficiency syndrome. The SAGE Encyclopedia of Abnormal and Clinical Psychology Sage Publications, Inc, University of Pennsylvania School of Medicine, USAGoogle Scholar
  10. 10.
    O’Doherty DCM, Tickell A, Ryder W, Chan C, Hermens DF, Bennett MR, Lagopoulos J (2017) Frontal and subcortical grey matter reductions in PTSD. Psychiatry Res Neuroimaging 266:1–9.  https://doi.org/10.1016/j.pscychresns.2017.05.008 CrossRefPubMedGoogle Scholar
  11. 11.
    O’Doherty DC, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J (2015) A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res 232(1):1–33.  https://doi.org/10.1016/j.pscychresns.2015.01.002 CrossRefPubMedGoogle Scholar
  12. 12.
    Philip NS, Carpenter SL, Sweet LH (2014) Developing neuroimaging phenotypes of the default mode network in PTSD: integrating the resting state, working memory, and structural connectivity. J Vis Exp (89). doi: https://doi.org/10.3791/51651
  13. 13.
    Martindale SL, Rowland JA, Shura RD, Taber KH (2018) Longitudinal changes in neuroimaging and neuropsychiatric status of post-deployment veterans: a CENC pilot study. Brain Inj 32(10):1208–1216.  https://doi.org/10.1080/02699052.2018.1492741 CrossRefPubMedGoogle Scholar
  14. 14.
    Averill LA, Abdallah CG, Pietrzak RH, Averill CL, Southwick SM, Krystal JH, Harpaz-Rotem I (2017) Combat exposure severity is associated with reduced cortical thickness in combat veterans: a preliminary report. Chronic stress (Thousand Oaks, Calif) 1. doi: https://doi.org/10.1177/2470547017724714 CrossRefGoogle Scholar
  15. 15.
    Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC, Martini B, Averill LA, Southwick SM, Krystal JH, Abdallah CG (2017) The association of PTSD symptom severity with localized Hippocampus and amygdala abnormalities. Chronic stress (Thousand Oaks, Calif) 1. doi: https://doi.org/10.1177/2470547017724069 CrossRefGoogle Scholar
  16. 16.
    van Wingen GA, Geuze E, Caan MW, Kozicz T, Olabarriaga SD, Denys D, Vermetten E, Fernandez G (2012) Persistent and reversible consequences of combat stress on the mesofrontal circuit and cognition. Proc Natl Acad Sci U S A 109(38):15508–15513.  https://doi.org/10.1073/pnas.1206330109 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, Densmore M, Haswell CC et al (2018) Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry 83(3):244–253.  https://doi.org/10.1016/j.biopsych.2017.09.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Butler O, Willmund G, Gleich T, Gallinat J, Kuhn S, Zimmermann P (2018) Hippocampal gray matter increases following multimodal psychological treatment for combat-related post-traumatic stress disorder. Brain and behavior 8(5):e00956.  https://doi.org/10.1002/brb3.956 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nelson EC, Heath AC, Lynskey MT, Agrawal A, Henders AK, Bowdler LM, Todorov AA, Madden PA et al (2014) PTSD risk associated with a functional DRD2 polymorphism in heroin-dependent cases and controls is limited to amphetamine-dependent individuals. Addict Biol 19(4):700–707.  https://doi.org/10.1111/adb.12062 CrossRefPubMedGoogle Scholar
  20. 20.
    Saunders EC, Lambert-Harris C, McGovern MP, Meier A, Xie H (2015) The prevalence of posttraumatic stress disorder symptoms among addiction treatment patients with cocaine use disorders. J Psychoactive Drugs 47(1):42–50.  https://doi.org/10.1080/02791072.2014.977501 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9(3):469–477CrossRefGoogle Scholar
  22. 22.
    Noble EP, Blum K, Khalsa ME, Ritchie T, Montgomery A, Wood RC, Fitch RJ, Ozkaragoz T et al (1993) Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend 33(3):271–285CrossRefGoogle Scholar
  23. 23.
    Dackis CA, Gold MS, Sweeney DR, Byron JP Jr, Climko R (1987) Single-dose bromocriptine reverses cocaine craving. Psychiatry Res 20(4):261–264CrossRefGoogle Scholar
  24. 24.
    Lawford BR, Young RM, Rowell JA, Qualichefski J, Fletcher BH, Syndulko K, Ritchie T, Noble EP (1995) Bromocriptine in the treatment of alcoholics with the D2 dopamine receptor A1 allele. Nat Med 1(4):337–341CrossRefGoogle Scholar
  25. 25.
    Bogomolova EV, Rauschenbach IY, Adonyeva NV, Alekseev AA, Faddeeva NV, Gruntenko NE (2010) Dopamine down-regulates activity of alkaline phosphatase in Drosophila: the role of D2-like receptors. J Insect Physiol 56(9):1155–1159.  https://doi.org/10.1016/j.jinsphys.2010.03.014 CrossRefPubMedGoogle Scholar
  26. 26.
    Rouillard C, Bedard PJ, Falardeau P, Dipaolo T (1987) Behavioral and biochemical evidence for a different effect of repeated administration of L-dopa and bromocriptine on denervated versus non-denervated striatal dopamine receptors. Neuropharmacology 26(11):1601–1606CrossRefGoogle Scholar
  27. 27.
    Blum K, Chen AL, Chen TJ, Braverman ER, Reinking J, Blum SH, Cassel K, Downs BW et al (2008) Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Theor Biol Med Model 5:24.  https://doi.org/10.1186/1742-4682-5-24 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blum K, Oscar-Berman M, Stuller E, Miller D, Giordano J, Morse S, McCormick L, Downs WB et al (2012) Neurogenetics and nutrigenomics of neuro-nutrient therapy for reward deficiency syndrome (RDS): clinical ramifications as a function of molecular neurobiological mechanisms. J Addict Res Ther 3(5):139.  https://doi.org/10.4172/2155-6105.1000139 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thanos PK, Rivera SN, Weaver K, Grandy DK, Rubinstein M, Umegaki H, Wang GJ, Hitzemann R et al (2005) Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: effects on ethanol drinking. Life Sci 77(2):130–139.  https://doi.org/10.1016/j.lfs.2004.10.061 CrossRefPubMedGoogle Scholar
  30. 30.
    Thanos PK, Michaelides M, Umegaki H, Volkow ND (2008) D2R DNA transfer into the nucleus accumbens attenuates cocaine self-administration in rats. Synapse (New York, NY) 62(7):481–486.  https://doi.org/10.1002/syn.20523 CrossRefGoogle Scholar
  31. 31.
    Blum K, Febo M, Badgaiyan RD (2016) Fifty years in the development of a glutaminergic-dopaminergic optimization complex (KB220) to balance brain reward circuitry in reward deficiency syndrome: a pictorial. Austin addiction sciences 1 (2)Google Scholar
  32. 32.
    Febo M, Blum K, Badgaiyan RD, Baron D, Thanos PK, Colon-Perez LM, Demortrovics Z, Gold MS (2017) Dopamine homeostasis: brain functional connectivity in reward deficiency syndrome. Frontiers in bioscience (Landmark edition) 22:669–691CrossRefGoogle Scholar
  33. 33.
    Blum K, Liu Y, Wang W, Wang Y, Zhang Y, Oscar-Berman M, Smolen A, Febo M et al (2015) rsfMRI effects of KB220Z on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad Med 127(2):232–241CrossRefGoogle Scholar
  34. 34.
    Blum K, Gardner E, Oscar-Berman M, Gold M (2012) “Liking” and “wanting” linked to reward deficiency syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr Pharm Des 18(1):113–118CrossRefGoogle Scholar
  35. 35.
    Comings DE, Muhleman D, Gysin R (1996) Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry 40(5):368–372.  https://doi.org/10.1016/0006-3223(95)00519-6 CrossRefPubMedGoogle Scholar
  36. 36.
    Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P, Nogami H, Briggs AH et al (1990) Allelic association of human dopamine D2 receptor gene in alcoholism. Jama 263(15):2055–2060CrossRefGoogle Scholar
  37. 37.
    Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ (1991) Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 48(7):648–654CrossRefGoogle Scholar
  38. 38.
    Blum K, Giordano J, Oscar-Berman M, Bowirrat A, Simpatico T, Barh D (2012) Diagnosis and healing in veterans suspected of suffering from post-traumatic stress disorder (PTSD) using reward gene testing and reward circuitry natural dopaminergic activation. J Genet Syndr Gene Ther 3(3):1000116.  https://doi.org/10.4172/2157-7412.1000116 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Roy-Byrne P, Arguelles L, Vitek ME, Goldberg J, Keane TM, True WR, Pitman RK (2004) Persistence and change of PTSD symptomatology--a longitudinal co-twin control analysis of the Vietnam Era Twin Registry. Soc Psychiatry Psychiatr Epidemiol 39(9):681–685.  https://doi.org/10.1007/s00127-004-0810-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Vaswani KK, Richard CW 3rd, Tejwani GA (1988) Cold swim stress-induced changes in the levels of opioid peptides in the rat CNS and peripheral tissues. Pharmacol Biochem Behav 29(1):163–168CrossRefGoogle Scholar
  41. 41.
    Szutorisz H, DiNieri JA, Sweet E, Egervari G, Michaelides M, Carter JM, Ren Y, Miller ML et al (2014) Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 39(6):1315–1323.  https://doi.org/10.1038/npp.2013.352 CrossRefGoogle Scholar
  42. 42.
    Auxemery Y (2012) Posttraumatic stress disorder (PTSD) as a consequence of the interaction between an individual genetic susceptibility, a traumatogenic event and a social context. Encephale 38(5):373–380.  https://doi.org/10.1016/j.encep.2011.12.003 CrossRefPubMedGoogle Scholar
  43. 43.
    Rayman JB, Hijazi J, Li X, Kedersha N, Anderson PJ, Kandel ER (2019) Genetic perturbation of TIA1 reveals a physiological role in fear memory. Cell Rep 26(11):2970–2983.e2974.  https://doi.org/10.1016/j.celrep.2019.02.048 CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang K, Wang L, Cao C, Li G, Fang R, Liu P, Luo S, Zhang X et al (2018) A DRD2/ANNK1-COMT interaction, consisting of functional variants, confers risk of post-traumatic stress disorder in traumatized Chinese. Frontiers in psychiatry 9:170.  https://doi.org/10.3389/fpsyt.2018.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Blum K, Chen ALC, Thanos PK, Febo M, Demetrovics Z, Dushaj K, Kovoor A, Baron D et al (2018) Genetic addiction risk score (GARS)™, a predictor of vulnerability to opioid dependence. Frontiers in bioscience (Elite edition) 10:175–196CrossRefGoogle Scholar
  46. 46.
    Li L, Bao Y, He S, Wang G, Guan Y, Ma D, Wang P, Huang X et al (2016) The association between genetic variants in the dopaminergic system and posttraumatic stress disorder: a meta-analysis. Medicine (Baltimore) 95(11):e3074.  https://doi.org/10.1097/md.0000000000003074 CrossRefGoogle Scholar
  47. 47.
    Tsang J, Fullard JF, Giakoumaki SG, Katsel P, Katsel P, Karagiorga VE, Greenwood TA, Braff DL et al (2015) The relationship between dopamine receptor D1 and cognitive performance. NPJ Schizophr 1:14002.  https://doi.org/10.1038/npjschz.2014.2 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Minichino A, Francesconi M, Carrion RE, Bevilacqua A, Parisi M, Rullo S, Ando A, Biondi M et al (2017) Prediction of functional outcome in young patients with a recent-onset psychiatric disorder: beyond the traditional diagnostic classification system. Schizophr Res 185:114–121.  https://doi.org/10.1016/j.schres.2016.12.019 CrossRefPubMedGoogle Scholar
  49. 49.
    Zainal Abidin S, Tan EL, Chan SC, Jaafar A, Lee AX, Abd Hamid MH, Abdul Murad NA, Pakarul Razy NF et al (2015) DRD and GRIN2B polymorphisms and their association with the development of impulse control behaviour among Malaysian Parkinson’s disease patients. BMC Neurol 15:59.  https://doi.org/10.1186/s12883-015-0316-2 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Prasad P, Ambekar A, Vaswani M (2013) Case-control association analysis of dopamine receptor polymorphisms in alcohol dependence: a pilot study in Indian males. BMC Res Notes 6:418.  https://doi.org/10.1186/1756-0500-6-418 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Reed JL, D’Ambrosio E, Marenco S, Ursini G, Zheutlin AB, Blasi G, Spencer BE, Romano R et al (2018) Interaction of childhood urbanicity and variation in dopamine genes alters adult prefrontal function as measured by functional magnetic resonance imaging (fMRI). PLoS One 13(4):e0195189.  https://doi.org/10.1371/journal.pone.0195189 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hemmings SM, Martin LI, Klopper M, van der Merwe L, Aitken L, de Wit E, Black GF, Hoal EG et al (2013) BDNF Val66Met and DRD2 Taq1A polymorphisms interact to influence PTSD symptom severity: a preliminary investigation in a South African population. Prog Neuro-Psychopharmacol Biol Psychiatry 40:273–280.  https://doi.org/10.1016/j.pnpbp.2012.10.011 CrossRefGoogle Scholar
  53. 53.
    Voisey J, Swagell CD, Hughes IP, Morris CP, van Daal A, Noble EP, Kann B, Heslop KA et al (2009) The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety 26(1):28–33.  https://doi.org/10.1002/da.20517 CrossRefPubMedGoogle Scholar
  54. 54.
    Lawford BR, Young R, Noble EP, Kann B, Ritchie T (2006) The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. European psychiatry : the journal of the Association of European Psychiatrists 21(3):180–185.  https://doi.org/10.1016/j.eurpsy.2005.01.006 CrossRefGoogle Scholar
  55. 55.
    Rajan R, Krishnan S, Sarma G, Sarma SP, Kishore A (2018) Dopamine receptor D3 rs6280 is associated with aberrant decision-making in Parkinson’s disease. Movement disorders clinical practice 5(4):413–416.  https://doi.org/10.1002/mdc3.12631 CrossRefPubMedGoogle Scholar
  56. 56.
    Oporto GH, Bornhardt T, Iturriaga V, Salazar LA (2018) Single nucleotide polymorphisms in genes of dopaminergic pathways are associated with bruxism. Clin Oral Investig 22(1):331–337.  https://doi.org/10.1007/s00784-017-2117-z CrossRefPubMedGoogle Scholar
  57. 57.
    Zhao C, Liu J, Gong P, Hu J, Zhou X (2016) Investigating the genetic basis of social conformity: the role of the dopamine receptor 3 (DRD3) gene. Neuropsychobiology 74(1):32–40.  https://doi.org/10.1159/000450710 CrossRefPubMedGoogle Scholar
  58. 58.
    Kang SG, Lee BH, Lee JS, Chai YG, Ko KP, Lee HJ, Han DM, Ji H et al (2014) DRD3 gene rs6280 polymorphism may be associated with alcohol dependence overall and with Lesch type I alcohol dependence in Koreans. Neuropsychobiology 69(3):140–146.  https://doi.org/10.1159/000358062 CrossRefPubMedGoogle Scholar
  59. 59.
    Bombin I, Arango C, Mayoral M, Castro-Fornieles J, Gonzalez-Pinto A, Gonzalez-Gomez C, Moreno D, Parellada M et al (2008) DRD3, but not COMT or DRD2, genotype affects executive functions in healthy and first-episode psychosis adolescents. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 147b(6):873–879.  https://doi.org/10.1002/ajmg.b.30710 CrossRefGoogle Scholar
  60. 60.
    Dragan WL, Oniszczenko W (2009) The association between dopamine D4 receptor exon III polymorphism and intensity of PTSD symptoms among flood survivors. Anxiety Stress Coping 22(5):483–495.  https://doi.org/10.1080/10615800802419407 CrossRefPubMedGoogle Scholar
  61. 61.
    Armbruster D, Mueller A, Moser DA, Lesch KP, Brocke B, Kirschbaum C (2009) Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response. Behav Neurosci 123(6):1288–1295.  https://doi.org/10.1037/a0017615 CrossRefGoogle Scholar
  62. 62.
    Brody GH, Chen YF, Yu T, Beach SR, Kogan SM, Simons RL, Windle M, Philibert RA (2012) Life stress, the dopamine receptor gene, and emerging adult drug use trajectories: a longitudinal, multilevel, mediated moderation analysis. Dev Psychopathol 24(3):941–951.  https://doi.org/10.1017/s0954579412000466 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bakermans-Kranenburg MJ, van IJzendoorn MH, Caspers K, Philibert R (2011) DRD4 genotype moderates the impact of parental problems on unresolved loss or trauma. Attach Hum Dev 13(3):253–269.  https://doi.org/10.1080/14616734.2011.562415 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Segman RH, Cooper-Kazaz R, Macciardi F, Goltser T, Halfon Y, Dobroborski T, Shalev AY (2002) Association between the dopamine transporter gene and posttraumatic stress disorder. Mol Psychiatry 7(8):903–907.  https://doi.org/10.1038/sj.mp.4001085 CrossRefPubMedGoogle Scholar
  65. 65.
    Drury SS, Brett ZH, Henry C, Scheeringa M (2013) The association of a novel haplotype in the dopamine transporter with preschool age posttraumatic stress disorder. J Child Adolesc Psychopharmacol 23(4):236–243.  https://doi.org/10.1089/cap.2012.0072 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hunnerkopf R, Strobel A, Gutknecht L, Brocke B, Lesch KP (2007) Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 32(12):2552–2560.  https://doi.org/10.1038/sj.npp.1301383 CrossRefGoogle Scholar
  67. 67.
    Valente NL, Vallada H, Cordeiro Q, Miguita K, Bressan RA, Andreoli SB, Mari JJ, Mello MF (2011) Candidate-gene approach in posttraumatic stress disorder after urban violence: association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF. J Mol Neurosci 44(1):59–67.  https://doi.org/10.1007/s12031-011-9513-7 CrossRefPubMedGoogle Scholar
  68. 68.
    Havelka Mestrovic A, Tudor L, Nikolac Perkovic M, Nedic Erjavec G, Kovacic Petrovic Z, Svob Strac D, Konjevod M, Pivac N (2018) Significant association between catechol-O-methyltransferase (COMT) Val158/108Met polymorphism and cognitive function in veterans with PTSD. Neurosci Lett 666:38–43.  https://doi.org/10.1016/j.neulet.2017.12.033 CrossRefPubMedGoogle Scholar
  69. 69.
    Deslauriers J, Acheson DT, Maihofer AX, Nievergelt CM, Baker DG, Geyer MA, Risbrough VB (2018) COMT val158met polymorphism links to altered fear conditioning and extinction are modulated by PTSD and childhood trauma. Depress Anxiety 35(1):32–42.  https://doi.org/10.1002/da.22678 CrossRefPubMedGoogle Scholar
  70. 70.
    Winkler EA, Yue JK, Ferguson AR, Temkin NR, Stein MB, Barber J, Yuh EL, Sharma S et al (2017) COMT Val(158)met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury. J Clin Neurosci 35:109–116.  https://doi.org/10.1016/j.jocn.2016.09.017 CrossRefPubMedGoogle Scholar
  71. 71.
    Humphreys KL, Scheeringa MS, Drury SS (2014) Race moderates the association of catechol-O-methyltransferase genotype and posttraumatic stress disorder in preschool children. J Child Adolesc Psychopharmacol 24(8):454–457.  https://doi.org/10.1089/cap.2014.0077 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Clark R, DeYoung CG, Sponheim SR, Bender TL, Polusny MA, Erbes CR, Arbisi PA (2013) Predicting post-traumatic stress disorder in veterans: interaction of traumatic load with COMT gene variation. J Psychiatr Res 47(12):1849–1856.  https://doi.org/10.1016/j.jpsychires.2013.08.013 CrossRefGoogle Scholar
  73. 73.
    Boscarino JA, Erlich PM, Hoffman SN, Zhang X (2012) Higher FKBP5, COMT, CHRNA5, and CRHR1 allele burdens are associated with PTSD and interact with trauma exposure: implications for neuropsychiatric research and treatment. Neuropsychiatr Dis Treat 8:131–139.  https://doi.org/10.2147/ndt.s29508 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang Y, Ming QS, Yi JY, Wang X, Chai QL, Yao SQ (2017) Gene-gene-environment interactions of serotonin transporter, monoamine oxidase a and childhood maltreatment predict aggressive behavior in Chinese adolescents. Front Behav Neurosci 11:17.  https://doi.org/10.3389/fnbeh.2017.00017 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Verhoeven FE, Booij L, Kruijt AW, Cerit H, Antypa N, Does W (2012) The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression. Brain and behavior 2(6):806–813.  https://doi.org/10.1002/brb3.96 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Frazzetto G, Di Lorenzo G, Carola V, Proietti L, Sokolowska E, Siracusano A, Gross C, Troisi A (2007) Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLoS One 2(5):e486.  https://doi.org/10.1371/journal.pone.0000486 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Mehta D, Voisey J, Bruenig D, Harvey W, Morris CP, Lawford B, Young RM (2018) Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain Behav Immun 74:133–142.  https://doi.org/10.1016/j.bbi.2018.08.014 CrossRefPubMedGoogle Scholar
  78. 78.
    Tian Y, Liu H, Guse L, Wong TK, Li J, Bai Y, Jiang X (2015) Association of genetic factors and gene-environment interactions with risk of developing posttraumatic stress disorder in a case-control study. Biological research for nursing 17(4):364–372.  https://doi.org/10.1177/1099800415588362 CrossRefPubMedGoogle Scholar
  79. 79.
    Liu Y, Garrett ME, Dennis MF, Green KT, Ashley-Koch AE, Hauser MA, Beckham JC, Kimbrel NA (2015) An examination of the association between 5-HTTLPR, combat exposure, and PTSD diagnosis among U.S. veterans. PLoS One 10(3):e0119998.  https://doi.org/10.1371/journal.pone.0119998 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Walsh K, Uddin M, Soliven R, Wildman DE, Bradley B (2014) Associations between the SS variant of 5-HTTLPR and PTSD among adults with histories of childhood emotional abuse: results from two African American independent samples. J Affect Disord 161:91–96.  https://doi.org/10.1016/j.jad.2014.02.043 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gressier F, Calati R, Balestri M, Marsano A, Alberti S, Antypa N, Serretti A (2013) The 5-HTTLPR polymorphism and posttraumatic stress disorder: a meta-analysis. J Trauma Stress 26(6):645–653.  https://doi.org/10.1002/jts.21855 CrossRefPubMedGoogle Scholar
  82. 82.
    Xie P, Kranzler HR, Farrer L, Gelernter J (2012) Serotonin transporter 5-HTTLPR genotype moderates the effects of childhood adversity on posttraumatic stress disorder risk: a replication study. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 159b(6):644–652.  https://doi.org/10.1002/ajmg.b.32068 CrossRefGoogle Scholar
  83. 83.
    Morey RA, Hariri AR, Gold AL, Hauser MA, Munger HJ, Dolcos F, McCarthy G (2011) Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder. BMC psychiatry 11:76.  https://doi.org/10.1186/1471-244x-11-76 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Grabe HJ, Spitzer C, Schwahn C, Marcinek A, Frahnow A, Barnow S, Lucht M, Freyberger HJ et al (2009) Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry 166(8):926–933.  https://doi.org/10.1176/appi.ajp.2009.08101542 CrossRefPubMedGoogle Scholar
  85. 85.
    Carver CS, Johnson SL, Kim Y (2016) Mu opioid receptor polymorphism, early social adversity, and social traits. Soc Neurosci 11(5):515–524.  https://doi.org/10.1080/17470919.2015.1114965 CrossRefPubMedGoogle Scholar
  86. 86.
    Slavich GM, Tartter MA, Brennan PA, Hammen C (2014) Endogenous opioid system influences depressive reactions to socially painful targeted rejection life events. Psychoneuroendocrinology 49:141–149.  https://doi.org/10.1016/j.psyneuen.2014.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Feusner J, Ritchie T, Lawford B, Young RM, Kann B, Noble EP (2001) GABA(A) receptor beta 3 subunit gene and psychiatric morbidity in a post-traumatic stress disorder population. Psychiatry Res 104(2):109–117CrossRefGoogle Scholar
  88. 88.
    Javidi H, Yadollahie M (2012) Post-traumatic stress disorder. The international journal of occupational and environmental medicine 3(1):2–9PubMedGoogle Scholar
  89. 89.
    Diagnostic and statistical manual of mental disorders (2013). Fifth edn. American Psychiatric Association, Alexandria, VAGoogle Scholar
  90. 90.
    Cheney AM, Koenig CJ, Miller CJ, Zamora K, Wright P, Stanley R, Fortney J, Burgess JF et al (2018) Veteran-centered barriers to VA mental healthcare services use. BMC Health Serv Res 18(1):591.  https://doi.org/10.1186/s12913-018-3346-9 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gallaway MS, Bell MR, Lagana-Riordan C, Fink DS, Meyer CE, Millikan AM (2013) The association between US Army enlistment waivers and subsequent behavioral and social health outcomes and attrition from service. Mil Med 178(3):261–266.  https://doi.org/10.7205/milmed-d-12-00316 CrossRefPubMedGoogle Scholar
  92. 92.
    Brown LA, Gallagher T, Petersen J, Benhamou K, Foa EB, Asnaani A (2018) Does CBT for anxiety-related disorders alter suicidal ideation? Findings from a naturalistic sample. J Anxiety Disord 59:10–16.  https://doi.org/10.1016/j.janxdis.2018.08.001 CrossRefPubMedGoogle Scholar
  93. 93.
    Smith BH, Higgins C, Baldacchino A, Kidd B, Bannister J (2012) Substance misuse of gabapentin. The British journal of general practice : the journal of the Royal College of General Practitioners 62(601):406–407.  https://doi.org/10.3399/bjgp12X653516 CrossRefGoogle Scholar
  94. 94.
    Fond G, Loundou A, Rabu C, Macgregor A, Lancon C, Brittner M, Micoulaud-Franchi JA, Richieri R et al (2014) Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology 231(18):3663–3676.  https://doi.org/10.1007/s00213-014-3664-5 CrossRefPubMedGoogle Scholar
  95. 95.
    McLaughlin T, Blum K, Oscar-Berman M, Febo M, Demetrovics Z, Agan G, Fratantonio J, Gold MS (2015) Using the neuroadaptagen KB200z to ameliorate terrifying, lucid nightmares in RDS patients: the role of enhanced, brain-reward, functional connectivity and dopaminergic homeostasis. J Reward Defic Syndr 1(1):24–35.  https://doi.org/10.17756/jrds.2015-006 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McLaughlin T, Blum K, Oscar-Berman M, Febo M, Agan G, Fratantonio JL, Simpatico T, Gold MS (2015) Putative dopamine agonist (KB220Z) attenuates lucid nightmares in PTSD patients: role of enhanced brain reward functional connectivity and homeostasis redeeming joy. J Behav Addict 4(2):106–115.  https://doi.org/10.1556/2006.4.2015.008 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    McLaughlin T, Febo M, Badgaiyan RD, Barh D, Dushaj K, Braverman ER, Li M, Madigan MA et al (2016) KB220Z™ a pro-dopamine regulator associated with the protracted, alleviation of terrifying lucid dreams. Can we infer neuroplasticity-induced changes in the reward circuit? J Reward Defic Syndr Addict Sci 2(1):3–13CrossRefGoogle Scholar
  98. 98.
    Febo M, Blum K, Badgaiyan RD, Perez PD, Colon-Perez LM, Thanos PK, Ferris CF, Kulkarni P et al (2017) Enhanced functional connectivity and volume between cognitive and reward centers of naive rodent brain produced by pro-dopaminergic agent KB220Z. PLoS One 12(4):e0174774.  https://doi.org/10.1371/journal.pone.0174774 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Naifeh JA, Mash HBH, Stein MB, Fullerton CS, Kessler RC, Ursano RJ (2019) The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS): progress toward understanding suicide among soldiers. Mol Psychiatry 24(1):34–48.  https://doi.org/10.1038/s41380-018-0197-z CrossRefPubMedGoogle Scholar
  100. 100.
    McLaughlin T, Oscar-Berman M, Simpatico T, Giordano J, Jones S, Barh D, Downs WB, Waite RL et al (2013) Hypothesizing repetitive paraphilia behavior of a medication refractive Tourette’s syndrome patient having rapid clinical attenuation with KB220Z-nutrigenomic amino-acid therapy (NAAT). J Behav Addict 2(2):117–124.  https://doi.org/10.1556/jba.2.2013.2.8 CrossRefPubMedGoogle Scholar
  101. 101.
    Thanos PK, Hamilton J, O’Rourke JR, Napoli A, Febo M, Volkow ND, Blum K, Gold M (2016) Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget.  https://doi.org/10.18632/oncotarget.8088
  102. 102.
    Starkman BG, Sakharkar AJ, Pandey SC (2012) Epigenetics-beyond the genome in alcoholism. Alcohol Res 34(3):293–305PubMedPubMedCentralGoogle Scholar
  103. 103.
    Sheppard CW, Smith DE, Gay GR (1972) The changing face of heroin addiction in the Haight-Ashbury. Int J Addict 7(1):109–122CrossRefGoogle Scholar
  104. 104.
    Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38(4):217–225.  https://doi.org/10.1016/j.tins.2015.01.002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kenneth Blum
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Email author
  • M. C. Gondré-Lewis
    • 8
  • E. J. Modestino
    • 9
  • L. Lott
    • 4
  • D. Baron
    • 1
  • D. Siwicki
    • 4
    • 6
  • T. McLaughlin
    • 10
  • A. Howeedy
    • 5
  • M. H. Krengel
    • 11
  • M. Oscar-Berman
    • 11
  • P. K. Thanos
    • 12
  • I. Elman
    • 13
  • M. Hauser
    • 6
  • L. Fried
    • 4
    • 14
  • A. Bowirrat
    • 15
  • R. D. Badgaiyan
    • 16
  1. 1.Graduate School of Biomedical SciencesWestern University Health SciencesPomonaUSA
  2. 2.Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
  3. 3.Department of Psychiatry, Boonshoft School of MedicineWright UniversityDaytonUSA
  4. 4.Department of Precision Behavioral ManagementGeneus HealthSan AntonioUSA
  5. 5.Division of Neurogenetic Research & Addiction TherapyThe Florida House ExperienceDeerfield BeachUSA
  6. 6.Division of Addiction ServicesDominion DiagnosticsNorth KingstonUSA
  7. 7.Division of Neuroscience & Addiction ResearchPathway Healthcare, LLC.BurminghamUSA
  8. 8.Department of Anatomy, Developmental Neuropsychopharmacology LaboratoryHoward University College of MedicineWashingtonUSA
  9. 9.Department of PsychologyCurry CollegeMiltonUSA
  10. 10.Center for Psychiatric MedicineLawrenceUSA
  11. 11.Department of NeurologyBoston University School of Medicine and VA Boston Healthcare SystemBostonUSA
  12. 12.Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical SciencesUniversity of BuffaloBuffaloUSA
  13. 13.Department of PsychiatryCooper University School of MedicineCamdenUSA
  14. 14.Transformations Treatment CenterDelray BeachUSA
  15. 15.Division of Anatomy, Biochemistry and Genetics Faculty of Medicine and Health SciencesAn-Najah National UniversityNablusPalestine
  16. 16.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations