Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. https://doi.org/10.1016/S0140-6736(10)61156-7
Article
CAS
PubMed
Google Scholar
NIH NI of ND and S (2017) Amyotrophic lateral sclerosis, pp. 1–24
Google Scholar
Boillée S, Vande-Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59. https://doi.org/10.1016/j.neuron.2006.09.018
Article
CAS
PubMed
Google Scholar
Pratt AJ, Getzoff ED, Perry JJP (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2012:1–14. https://doi.org/10.2147/DNND.S19803
Article
PubMed
Google Scholar
Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. https://doi.org/10.1038/362059a0
Article
CAS
PubMed
Google Scholar
Zheng C, Nennesmo I, Fadeel B, Henter J-I (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567. https://doi.org/10.1002/ana.20223
Article
CAS
PubMed
Google Scholar
Moloney EB, de Winter F, Verhaagen J, et al (2014) ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. 8:1–18. https://doi.org/10.3389/fnins.2014.00252
Fischer LR, Culver DG, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240. https://doi.org/10.1016/j.expneurol.2003.10.004
Article
PubMed
Google Scholar
Cleveland DW, Williamson TL (1999) Slowing of axonal transport is a very early event in the toxicity ofALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56. https://doi.org/10.1038/4553
Article
PubMed
Google Scholar
Zhang B, Tu P, Abtahian F et al (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98
Article
PubMed
PubMed Central
Google Scholar
Nadal L, Garcia N, Hurtado E et al (2017) Presynaptic muscarinic acetylcholine receptors and TrkB receptor cooperate in the elimination of redundant motor nerve terminals during development. Front Aging Neurosci 9:1–7. https://doi.org/10.3389/fnagi.2017.00024
Article
CAS
Google Scholar
Nadal L, Garcia N, Hurtado E et al (2016) Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A ) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 9:1–19. https://doi.org/10.1186/s13041-016-0248-9
Article
CAS
Google Scholar
Hurtado E, Cilleros V, Nadal L et al (2017) Muscle contraction regulates BDNF/TrkB signaling to modulate synaptic function through presynaptic cPKCα and cPKCβI. Front Mol Neurosci 10:1–22. https://doi.org/10.3389/fnmol2017.00147
CAS
Article
Google Scholar
Mantilla CB, Stowe JM, Sieck DC et al (2014) TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol 117:910–920. https://doi.org/10.1152/japplphysiol.01386.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda K, Klinkosz B, Greene T et al (1995) Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 37:505–511. https://doi.org/10.1093/jnen/61.2.142
Article
CAS
PubMed
Google Scholar
Ikeda O, Murakami M, Ino H et al (2002) Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J Neuropathol Exp Neurol 61:142–153
Article
CAS
PubMed
Google Scholar
Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159:548–553. https://doi.org/10.1016/0006-291X(89)90028-4
Article
CAS
PubMed
Google Scholar
Haase G, Kennel P, Pettmann B et al (1997) Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat Med 3:429–436
Article
CAS
PubMed
Google Scholar
Turner BJ, Cheah IK, Macfarlane KJ et al (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–763. https://doi.org/10.1046/j.1471-4159.2003.02053.x
Article
CAS
PubMed
Google Scholar
Zhai J, Zhou W, Li J et al (2011) The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Hum Mol Genet 20:4116–4131. https://doi.org/10.1093/hmg/ddr335
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanpallewar SU, Barrick CA, Buckley H et al (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:1–7. https://doi.org/10.1371/journal.pone.0039946
Article
CAS
Google Scholar
Mutoh T, Sobue G, Hamano T et al (2000) Decreased phosphorylation levels of TrkB Neurotrophin receptor in the spinal cords from patients with amyotrophic lateral sclerosis. Neurochem Res 25:239–245. https://doi.org/10.1023/A:1007575504321
Article
CAS
PubMed
Google Scholar
Corse AM, Bilak MM, Bilak SR et al (1999) Preclinical testing of neuroprotective neurotrophic factors in a model of chronic motor neuron degeneration. Neurobiol Dis 6:335–346. https://doi.org/10.1006/nbdi.1999.0253
Article
CAS
PubMed
Google Scholar
Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219. https://doi.org/10.1038/nrd3366
Article
CAS
PubMed
Google Scholar
Gould TW, Oppenheim RW (2011) Motor neuron trophic factors: therapeutic use in ALS? Brain Res Rev 67:1–39. https://doi.org/10.1016/j.brainresrev.2010.10.003
Article
CAS
PubMed
Google Scholar
Nishio T, Sunohara N, Furukawa S (1998) Neutrophin switching in spinal motoneurons of amyotrophic lateral sclerosis. Neuroreport 9:1661–1665
Article
CAS
PubMed
Google Scholar
Besalduch N, Tomàs M, Santafé MM et al (2010) Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J Comp Neurol 518:211–228. https://doi.org/10.1002/cne.22220
Article
CAS
PubMed
Google Scholar
Obis T, Besalduch N, Hurtado E et al (2015) The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 8:1–16. https://doi.org/10.1186/s13041-015-0098-x
Article
CAS
Google Scholar
Simó A, Just-Borràs L, Cilleros-Mañé V et al (2018) BDNF-TrkB signaling coupled to nPKCε and cPKCβI modulate the phosphorylation of the Exocytotic protein Munc18-1 during synaptic activity at the neuromuscular junction. Front Mol Neurosci 11:207–227. https://doi.org/10.3389/fnmol.2018.00207
Article
CAS
PubMed
PubMed Central
Google Scholar
Nijssen J, Comley LH, Hedlund E (2017) Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 132:1–23. https://doi.org/10.1007/s00401-017-1708-8
Article
Google Scholar
Deforges S, Branchu J, Biondi O et al (2009) Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 587:3561–3571. https://doi.org/10.1113/jphysiol.2009.169748
Article
CAS
PubMed
PubMed Central
Google Scholar
Hegedus J, Putman CT, Tyreman N, Gordon T (2008) Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 586:3337–3351. https://doi.org/10.1113/jphysiol.2007.149286
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchetto MCN, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3:649–657. https://doi.org/10.1016/j.stem.2008.10.001
Article
CAS
PubMed
Google Scholar
Tjust AE, Brannstrom T, Pedrosa Domellof F (2012) Unaffected motor endplate occupancy in eye muscles of ALS G93A mouse model. Front Biosci (Schol Ed) 4:1547–1555
Google Scholar
Harandi VM, Gaied ARN, Brännström T et al (2016) Unchanged neurotrophic factors and their receptors correlate with sparing in extraocular muscles in amyotrophic lateral sclerosis. Investig Opthalmology Vis Sci 57:6831–6842. https://doi.org/10.1167/iovs.16-20074
Article
CAS
Google Scholar
Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (80- ) 264:1772–1775
Article
CAS
Google Scholar
Tu PH, Raju P, Robinson KA et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93:315531–315560
Article
Google Scholar
McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7:557–570. https://doi.org/10.1016/j.genm.2010.11.010
Article
PubMed
Google Scholar
Obis T, Hurtado E, Nadal L et al (2015) The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 8:1–16. https://doi.org/10.1186/s13041-015-0171-5
Article
CAS
Google Scholar
Hurtado E, Cilleros V, Just L et al (2017) Synaptic activity and muscle contraction increases PDK1 and PKCβI phosphorylation in the presynaptic membrane of the neuromuscular junction. Front Mol Neurosci 10:1–13. https://doi.org/10.3389/fnmol.2017.00270
CAS
Article
Google Scholar
Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: An alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254. https://doi.org/10.1016/j.jneumeth.2008.05.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Z, Sabirzhanov B, Keifer J (2010) Oligomeric amyloid-inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J Biol Chem 285:34708–34717. https://doi.org/10.1074/jbc.M110.150821
Article
CAS
PubMed
PubMed Central
Google Scholar
Middlemas DS, Meisenhelder J, Hunter T (1994) Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma1 is a substrate of the TrkB receptor. J Biol Chem 269:5458–5466
CAS
PubMed
Google Scholar
Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129. https://doi.org/10.1523/JNEUROSCI.16-10-03123.1996
Article
CAS
PubMed
PubMed Central
Google Scholar
Santafé MM, Garcia N, Tomàs M et al (2014) The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci Lett 561:171–175. https://doi.org/10.1016/j.neulet.2013.12.073
Article
CAS
PubMed
Google Scholar
Song W, Jin XA (2015) Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way. Neurosci Lett 591:8–12. https://doi.org/10.1016/j.neulet.2015.02.019
Article
CAS
PubMed
Google Scholar
Dulubova I, Sugita S, Hill S et al (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382. https://doi.org/10.1093/emboj/18.16.4372
Article
CAS
PubMed
PubMed Central
Google Scholar
Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362. https://doi.org/10.1038/35006120
Article
CAS
PubMed
Google Scholar
Verhage M, Maia AS, Plomp JJ et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869. https://doi.org/10.1126/science.287.5454.864
Article
CAS
PubMed
Google Scholar
Yang B, Steegmaier M, Gonzalez LC, Scheller RH (2000) nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 148:247–252
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Ernst SA, Gladycheva SE et al (2004) Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo. J Biol Chem 279:55924–55936. https://doi.org/10.1074/jbc.M410024200
Article
CAS
PubMed
Google Scholar
Hata Y, Slaughter CA, Südhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351. https://doi.org/10.1038/366347a0
Article
CAS
Google Scholar
Medine CN, Rickman C, Chamberlain LH, Duncan RR (2007) Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J Cell Sci 120:4407–4415. https://doi.org/10.1242/jcs.020230
Article
CAS
PubMed
Google Scholar
de Vries KJ, Geijtenbeek A, Brian EC et al (2000) Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur J Neurosci 12:385–390. https://doi.org/10.1046/j.1460-9568.2000.00931.x
Article
PubMed
Google Scholar
Dulubova I, Khvotchev M, Liu S et al (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104:2697–2702. https://doi.org/10.1073/pnas.0611318104
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita Y, Sasaki T, Fukui K et al (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: Its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265–7268
Article
CAS
PubMed
Google Scholar
Genc O, Kochubey O, Toonen RF et al (2014) Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. Elife 3:1715–1734. https://doi.org/10.7554/eLife.01715
Article
Google Scholar
Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. https://doi.org/10.1126/science.1161748
Article
CAS
PubMed
PubMed Central
Google Scholar
Leenders AGM, Sheng Z-H (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84. https://doi.org/10.1016/j.pharmthera.2004.10.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278–9286. https://doi.org/10.1523/JNEUROSCI.22-21-09278.2002
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorsey SG, Lovering RM, Renn CL et al (2011) Genetic deletion of trkB.T1 increases neuromuscular function. Am J Physiol - Cell Physiol 302:141–153. https://doi.org/10.1152/ajpcell.00469.2010
Article
CAS
Google Scholar
Küst BM, Copray JCVM, Brouwer N et al (2002) Elevated levels of Neurotrophins in human biceps Brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 177:419–427. https://doi.org/10.1006/exnr.2002.8011
Article
CAS
PubMed
Google Scholar
Hempstead BL (2002) The many faces of p75NTR. Curr Opin Neurobiol 12:260–267. https://doi.org/10.1016/S0959-4388(02)00321-5
Article
CAS
PubMed
Google Scholar
Peng HB, Yang J-F, Dai Z et al (2003) Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23:5050–5060. https://doi.org/10.1523/JNEUROSCI.23-12-05050.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantilla CB, Gransee HM, Zhan W-Z, Sieck GC (2013) Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol 247:101–109. https://doi.org/10.1016/j.expneurol.2013.04.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Ochs G, Penn RD, York M et al (2000) A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:201–206
Article
CAS
PubMed
Google Scholar
Beck M, Flachenecker P, Magnus T et al (2005) Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph Lateral Scler Other Motor Neuron Disord 6:100–103. https://doi.org/10.1080/14660820510028412
Article
CAS
PubMed
Google Scholar
Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280. https://doi.org/10.1016/S0959-4388(00)00208-7
Article
CAS
PubMed
Google Scholar
Garcia N, Priego M, Obis T et al (2013) Adenosine A1 and A2A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. Eur J Neurosci 38:2229–2241. https://doi.org/10.1111/ejn.12220
Article
PubMed
Google Scholar
Tomàs J, Garcia N, Lanuza MA et al (2017) Presynaptic membrane receptors modulate ACh release, axonal competition and synapse elimination during neuromuscular junction development. Front Mol Neurosci 10:1–12. https://doi.org/10.3389/FNMOL.2017.00132
Article
Google Scholar
Felipo V, Miñana MD, Grisolía S (1993) Inhibitors of protein kinase C prevent the toxicity of glutamate in primary neuronal cultures. Brain Res 604:192–196. https://doi.org/10.1016/0006-8993(93)90368-W
Article
CAS
PubMed
Google Scholar
Krieger C, R a L, Pelech SL, C a S (1996) Amyotrophic lateral sclerosis: the involvement of intracellular Ca2+ and protein kinase C. Trends Pharmacol Sci 17:114–120. https://doi.org/10.1016/0165-6147(96)10004-3
Article
CAS
PubMed
Google Scholar
Mondola P, Damiano S, Sasso A, Santillo M (2016) The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front Physiol 7:1–8. https://doi.org/10.3389/fphys.2016.00594
Article
Google Scholar
Nagao M, Kato S, Oda M, Hirai S (1998) Decrease of protein kinase C in the spinal motor neurons of amyotrophic lateral sclerosis. Acta Neuropathol 96:52–56. https://doi.org/10.1007/s004010050859
Article
CAS
PubMed
Google Scholar
Amieux PS, Cummings DE, Motamed K et al (1997) Compensatory regulation of RIalpha protein levels in protein kinase a mutant mice. J Biol Chem 272:3993–3998
Article
CAS
PubMed
Google Scholar
Brandon EP, Idzerda RL, McKnight GS (1997) PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 7:397–403. https://doi.org/10.1016/S0959-4388(97)80069-4
Article
CAS
PubMed
Google Scholar
Hu J-H, Zhang H, Wagey R et al (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 85:432–442. https://doi.org/10.1046/j.1471-4159.2003.01670.x
Article
CAS
PubMed
Google Scholar
Hu JH, Chernoff K, Pelech S, Krieger C (2003) Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem 85:422–431. https://doi.org/10.1046/j.1471-4159.2003.01669.x
Article
CAS
PubMed
Google Scholar
Plomp JJ, Vergouwe MN, Van den Maagdenberg AM et al (2000) Abnormal transmitter release at neuromuscular junctions of mice carrying the tottering alpha1A Ca2+ channel mutation. Brain 123:463–471. https://doi.org/10.1093/brain/123.3.463
Article
PubMed
Google Scholar
Eisen A (2001) Clinical electrophysiology of the upper and lower motor neuron in amyotrophic lateral sclerosis. Semin Neurol 21:141–154. https://doi.org/10.1055/s-2001-15261
Article
CAS
PubMed
Google Scholar
Rocha MC, Pousinha PA, Correia AM et al (2013) Early changes of neuromuscular transmission in the SOD1(G93A) mice model of ALS start long before motor symptoms onset. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0073846
Article
CAS
Google Scholar
Wood SJ, Slater CR (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J Physiol 500:165–176
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupuis L, Pradat P-F, Ludolph AC, Loeffler J-P (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82. https://doi.org/10.1016/S1474-4422(10)70224-6
Article
CAS
PubMed
Google Scholar
Dupuis L, Gonzalez De Aguilar JL, Oudart H et al (2004) Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis 1:245–254. https://doi.org/10.1159/000085063
Article
PubMed
Google Scholar
Palamiuc L, Schlagowski A, Ngo ST et al (2015) A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 7:526–546. https://doi.org/10.15252/emmm.201404433
Article
CAS
PubMed
PubMed Central
Google Scholar
Gertler RA, Robbins N (1978) Differences in neuromuscular transmission in red and white muscles. Brain Res 142:160–164. https://doi.org/10.1016/0006-8993(78)90186-5
Article
CAS
PubMed
Google Scholar
Martineau É, Di Polo A, Vande Velde C, Robitaille R (2018) Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. Elife 7:1–19. https://doi.org/10.7554/eLife.41973
Article
Google Scholar