Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 7085–7096 | Cite as

Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons

  • Li-Na Huang
  • Yun Zou
  • Shao-Gen Wu
  • Hong-Hong Zhang
  • Qing-Xiang Mao
  • Jin-Bao LiEmail author
  • Yuan-Xiang TaoEmail author
Article
  • 293 Downloads

Abstract

Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.

Keywords

Fn14 NF-κB pathway Primary sensory neurons Neuropathic pain 

Notes

Funding

This work was supported by the grants (NS094664, NS094224, and DA033390) from the National Institutes of Health (Bethesda, Maryland, USA).

Compliance with Ethical Standards

Ethical Approval

The Institutional Animal Care and Use Committee at New Jersey Medical School, Rutgers approved all experimental procedures (IACUC approved number 13035A2E0716).

Conflict of Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2019_1545_MOESM1_ESM.ppt (220 kb)
ESM 1 (PPT 219 kb)
12035_2019_1545_MOESM2_ESM.doc (46 kb)
ESM 2 (DOC 46 kb)

References

  1. 1.
    DiBonaventura MD, Sadosky A, Concialdi K, Hopps M, Kudel I, Parsons B, Cappelleri JC, Hlavacek P et al (2017) The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. J Pain Res 10:2525–2538.  https://doi.org/10.2147/JPR.S127014 CrossRefGoogle Scholar
  2. 2.
    van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662.  https://doi.org/10.1016/j.pain.2013.11.013 CrossRefGoogle Scholar
  3. 3.
    Mitka M (2003) “Virtual textbook” on pain developed: effort seeks to remedy gap in medical education. Jama 290(18):2395.  https://doi.org/10.1001/jama.290.18.2395 CrossRefGoogle Scholar
  4. 4.
    Vorobeychik Y, Gordin V, Mao J, Chen L (2011) Combination therapy for neuropathic pain: a review of current evidence. CNS Drugs 25(12):1023–1034.  https://doi.org/10.2165/11596280-000000000-00000 CrossRefGoogle Scholar
  5. 5.
    Dworkin RH, O'Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, Levy RM, Backonja M et al (2013) Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 154(11):2249–2261.  https://doi.org/10.1016/j.pain.2013.06.004 CrossRefGoogle Scholar
  6. 6.
    Yang DZ, Sin B, Beckhusen J, Xia D, Khaimova R, Iliev I (2018) Opioid-induced hyperalgesia in the nonsurgical setting: A systematic review. Am J Ther:1.  https://doi.org/10.1097/MJT.0000000000000734
  7. 7.
    Raffa RB, Pergolizzi JV Jr (2013) Opioid-induced hyperalgesia: is it clinically relevant for the treatment of pain patients? Pain management nursing : official journal of the American Society of Pain Management. Nurses 14(3):e67–e83.  https://doi.org/10.1016/j.pmn.2011.04.002 Google Scholar
  8. 8.
    Bekhit MH (2010) Opioid-induced hyperalgesia and tolerance. Am J Ther 17(5):498–510.  https://doi.org/10.1097/MJT.0b013e3181ed83a0 CrossRefGoogle Scholar
  9. 9.
    Meyer R, Patel AM, Rattana SK, Quock TP, Mody SH (2014) Prescription opioid abuse: a literature review of the clinical and economic burden in the United States. Popul Health Manag 17(6):372–387.  https://doi.org/10.1089/pop.2013.0098 CrossRefGoogle Scholar
  10. 10.
    Polavarapu R, Gongora MC, Winkles JA, Yepes M (2005) Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappa B pathway activation. J Neurosci 25(44):10094–10100.  https://doi.org/10.1523/JNEUROSCI.3382-05.2005 CrossRefGoogle Scholar
  11. 11.
    Qi X, Qin L, Du R, Chen Y, Lei M, Deng M, Wang J (2017) Lipopolysaccharide upregulated intestinal epithelial cell expression of Fn14 and activation of Fn14 signaling amplify intestinal TLR4-mediated inflammation. Front Cell Infect Microbiol 7:315.  https://doi.org/10.3389/fcimb.2017.00315 CrossRefGoogle Scholar
  12. 12.
    Liu Y, Xu M, Min X, Wu K, Zhang T, Li K, Xiao S, Xia Y (2017) TWEAK/Fn14 activation participates in Ro52-mediated photosensitization in cutaneous lupus erythematosus. Front Immunol 8:651.  https://doi.org/10.3389/fimmu.2017.00651 CrossRefGoogle Scholar
  13. 13.
    Xia Y, Campbell SR, Broder A, Herlitz L, Abadi M, Wu P, Michaelson JS, Burkly LC et al (2012) Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol 145(2):108–121.  https://doi.org/10.1016/j.clim.2012.08.008 CrossRefGoogle Scholar
  14. 14.
    Zou Y, Bao S, Wang F, Guo L, Zhu J, Wang J, Deng X, Li J (2018) FN14 blockade on pulmonary microvascular endothelial cells improves the outcome of sepsis-induced acute lung injury. Shock 49(2):213–220.  https://doi.org/10.1097/SHK.0000000000000915 CrossRefGoogle Scholar
  15. 15.
    Sato S, Ogura Y, Kumar A (2014) TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction. Front Immunol 5:18.  https://doi.org/10.3389/fimmu.2014.00018 CrossRefGoogle Scholar
  16. 16.
    Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ (2010) The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol 188(6):833–849.  https://doi.org/10.1083/jcb.200909117 CrossRefGoogle Scholar
  17. 17.
    Wilhelm A, Shepherd EL, Amatucci A, Munir M, Reynolds G, Humphreys E, Resheq Y, Adams DH et al (2016) Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol 239(1):109–121.  https://doi.org/10.1002/path.4707 CrossRefGoogle Scholar
  18. 18.
    Tanabe K, Bonilla I, Winkles JA, Strittmatter SM (2003) Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 23(29):9675–9686.  https://doi.org/10.1186/1471-2202-4-27
  19. 19.
    Yepes M (2007) TWEAK and the central nervous system. Mol Neurobiol 35(3):255–265.  https://doi.org/10.1007/s12035-007-0024-z
  20. 20.
    Yepes M (2007) Tweak and FN14 in central nervous system health and disease. Front Biosci 12:2772–2781.  https://doi.org/10.2741/2271
  21. 21.
    Desplat-Jego S, Creidy R, Varriale S, Allaire N, Luo Y, Bernard D, Hahm K, Burkly L et al (2005) Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin Immunol 117(1):15–23.  https://doi.org/10.1016/j.clim.2005.06.005 CrossRefGoogle Scholar
  22. 22.
    Wen J, Chen CH, Stock A, Doerner J, Gulinello M, Putterman C (2016) Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice. Brain Behav Immun 54:27–37.  https://doi.org/10.1016/j.bbi.2015.12.017 CrossRefGoogle Scholar
  23. 23.
    Frauenknecht K, Bargiotas P, Bauer H, von Landenberg P, Schwaninger M, Sommer C (2010) Neuroprotective effect of Fn14 deficiency is associated with induction of the granulocyte-colony stimulating factor (G-CSF) pathway in experimental stroke and enhanced by a pathogenic human antiphospholipid antibody. J Neuroimmunol 227(1–2):1–9.  https://doi.org/10.1016/j.jneuroim.2010.05.043 CrossRefGoogle Scholar
  24. 24.
    Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, Castanas E (2013) BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 8(12):e83250.  https://doi.org/10.1371/journal.pone.0083250 CrossRefGoogle Scholar
  25. 25.
    Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136(1–2):188–201.  https://doi.org/10.1016/j.pain.2008.01.016 CrossRefGoogle Scholar
  26. 26.
    Li Z, Gu X, Sun L, Wu S, Liang L, Cao J, Lutz BM, Bekker A et al (2015) Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma. Pain 156(4):711–721.  https://doi.org/10.1097/j.pain.0000000000000103 CrossRefGoogle Scholar
  27. 27.
    Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, Wang W, Guan X et al (2013) A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 16(8):1024–1031.  https://doi.org/10.1038/nn.3438 CrossRefGoogle Scholar
  28. 28.
    Liaw WJ, Zhu XG, Yaster M, Johns RA, Gauda EB, Tao YX (2008) Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein. Mol Pain 4:45.  https://doi.org/10.1186/1744-8069-4-45 CrossRefGoogle Scholar
  29. 29.
    He Y, Tian X, Hu X, Porreca F, Wang ZJ (2012) Negative reinforcement reveals non-evoked ongoing pain in mice with tissue or nerve injury. J Pain 13(6):598–607.  https://doi.org/10.1016/j.jpain.2012.03.011 CrossRefGoogle Scholar
  30. 30.
    Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M et al (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 23(17):6703–6712.  https://doi.org/10.1523/JNEUROSCI.23-17-06703.2003
  31. 31.
    Wu S, Marie Lutz B, Miao X, Liang L, Mo K, Chang YJ, Du P, Soteropoulos P et al (2016) Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice. Mol Pain 12:174480691662904.  https://doi.org/10.1177/1744806916629048 CrossRefGoogle Scholar
  32. 32.
    Guo D, Hu X, Zhang H, Lu C, Cui G, Luo X (2018) Orientin and neuropathic pain in rats with spinal nerve ligation. Int Immunopharmacol 58:72–79.  https://doi.org/10.1016/j.intimp.2018.03.013 CrossRefGoogle Scholar
  33. 33.
    Liang L, Zhao JY, Gu X, Wu S, Mo K, Xiong M, Marie Lutz B, Bekker A et al (2016) G9a inhibits CREB-triggered expression of mu opioid receptor in primary sensory neurons following peripheral nerve injury. Mol Pain 12:174480691668224.  https://doi.org/10.1177/1744806916682242 CrossRefGoogle Scholar
  34. 34.
    Yepes M, Brown SA, Moore EG, Smith EP, Lawrence DA, Winkles JA (2005) A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am J Pathol 166(2):511–520.  https://doi.org/10.1016/S0002-9440(10)62273-0 CrossRefGoogle Scholar
  35. 35.
    Hosokawa Y, Hosokawa I, Shindo S, Ozaki K, Nakae H, Matsuo T (2012) Tumor necrosis factor-like weak inducer of apoptosis increases CC chemokine ligand 20 production in interleukin 1beta-stimulated human gingival fibroblasts. Hum Immunol 73(5):470–473.  https://doi.org/10.1016/j.humimm.2012.02.021 CrossRefGoogle Scholar
  36. 36.
    Echeverry R, Wu F, Haile WB, Wu J, Yepes M (2012) The cytokine tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 have a neuroprotective effect in the central nervous system. J Neuroinflammation 9:45.  https://doi.org/10.1186/1742-2094-9-45 CrossRefGoogle Scholar
  37. 37.
    Bao Q, Li C, Xu C, Zhang R, Zhao K, Duan Z (2018) Porcine enterocyte protein Btnl5 negatively regulates NF-kappa B pathway by interfering p65 nuclear translocation. Gene 646:47–55.  https://doi.org/10.1016/j.gene.2017.11.070 CrossRefGoogle Scholar
  38. 38.
    Zhang YC, Huo FC, Wei LL, Gong CC, Pan YJ, Mou J, Pei DS (2017) PAK5-mediated phosphorylation and nuclear translocation of NF-kappaB-p65 promotes breast cancer cell proliferation in vitro and in vivo. J Exp Clin Cancer Res : CR 36(1):146.  https://doi.org/10.1186/s13046-017-0610-5 CrossRefGoogle Scholar
  39. 39.
    Tomita H, Tabata K, Takahashi M, Nishiyama F, Sugano E (2016) Light induces translocation of NF-kappaB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina. Biochem Biophys Res Commun 473(4):1013–1018.  https://doi.org/10.1016/j.bbrc.2016.04.008 CrossRefGoogle Scholar
  40. 40.
    Chen Y, Chen X, Yu J, Xu X, Wei X, Gu X, Liu C, Zhang D et al (2016) JAB1 is involved in neuropathic pain by regulating JNK and NF-kappaB activation after chronic constriction injury. Neurochem Res 41(5):1119–1129.  https://doi.org/10.1007/s11064-015-1802-z CrossRefGoogle Scholar
  41. 41.
    Xu T, Li D, Zhou X, Ouyang HD, Zhou LJ, Zhou H, Zhang HM, Wei XH et al (2017) Oral application of magnesium-L-Threonate attenuates vincristine-induced allodynia and hyperalgesia by normalization of tumor necrosis factor-alpha/nuclear factor-kappaB signaling. Anesthesiology 126(6):1151–1168.  https://doi.org/10.1097/ALN.0000000000001601 CrossRefGoogle Scholar
  42. 42.
    Yu HM, Wang Q, Sun WB (2017) Silencing of FKBP51 alleviates the mechanical pain threshold, inhibits DRG inflammatory factors and pain mediators through the NF-kappaB signaling pathway. Gene 627:169–175.  https://doi.org/10.1016/j.gene.2017.06.029 CrossRefGoogle Scholar
  43. 43.
    Zhang HH, Hu J, Zhou YL, Hu S, Wang YM, Chen W, Xiao Y, Huang LY et al (2013) Promoted interaction of nuclear factor-kappaB with demethylated cystathionine-beta-synthetase gene contributes to gastric hypersensitivity in diabetic rats. J Neurosci 33(21):9028–9038.  https://doi.org/10.1523/JNEUROSCI.1068-13.2013 CrossRefGoogle Scholar
  44. 44.
    Zhang HH, Hu J, Zhou YL, Qin X, Song ZY, Yang PP, Hu S, Jiang X et al (2015) Promoted interaction of nuclear factor-kappaB with demethylated purinergic P2X3 receptor gene contributes to neuropathic pain in rats with diabetes. Diabetes 64(12):4272–4284.  https://doi.org/10.2337/db15-0138 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology, New Jersey Medical School, RutgersThe State University of New JerseyNewarkUSA
  2. 2.Department of Anesthesiology, Shanghai General HospitalShanghai Jiao Tong University School of Medicine, (Original named “Shanghai First People’s Hospital”)ShanghaiChina

Personalised recommendations