Skip to main content
Log in

A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A wealth of evidence indicates that the lateral wings subnucleus of the dorsal raphe nucleus (lwDR) is implicated in the processing of panic-associated stimuli. Escape expression in the elevated T-maze, considered a panic-related defensive behavior, markedly and selectively recruits non-serotonergic cells within this DR subregion and in the dorsal periaqueductal gray (dPAG), another key panic-associated area. However, whether anti-panic drugs may interfere with this pattern of neuronal activation is still unknown. In the present study, the effects of acute (10 mg/kg) or chronic fluoxetine (10 mg/kg/daily/21 days) treatment on the number of serotonergic and non-serotonergic cells induced by escape expression within the rat DR and PAG subnuclei were investigated by immunochemistry. The results showed that chronic, but not acute, treatment with fluoxetine impaired escape expression, indicating a panicolytic-like effect, and markedly decreased the number of non-serotonergic cells that were recruited in the lwDR and dPAG. The same treatment selectively increased the number of serotonergic neurons within the lwDR. Our immunochemistry analyses also revealed that the non-serotonergic cells recruited in the lwDR and dPAG by the escape expression were not nitrergic. Overall, our findings suggest that the anti-panic effect of chronic treatment with fluoxetine is mediated by stimulation of the lwDR-dPAG pathway that controls the expression of panic-associated escape behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paul ED, Lowry CA (2013) Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol 27(12):1090–1106

    Article  CAS  PubMed  Google Scholar 

  2. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668

    Article  CAS  PubMed  Google Scholar 

  3. Descarries L, Watkins KC, Garcia S, Beaudet A (1982) The serotonin neurons in nucleus raphe dorsalis of adult rat: a light and electron microscope radioautographic study. J Comp Neurol 207(3):239–254

    Article  CAS  PubMed  Google Scholar 

  4. Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667

    Article  CAS  PubMed  Google Scholar 

  5. Hale MW, Shekhar A, Lowry CA (2012) Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 32(5):695–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C, Heemstra LA, Beck SG (2011) Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61(3):524–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abrams JK, Johnson PL, Hollis JH et al (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018:46–57

    Article  PubMed  Google Scholar 

  8. Steinbusch HW, Nieuwenhuys R, Verhofstad AA et al (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol 77:157–174

    CAS  Google Scholar 

  9. Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brain stem nuclei in the rat. Brain Res 80:237–249

    Article  CAS  PubMed  Google Scholar 

  10. Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RGH, To¨rk I (1991) Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience 42(3):757–775

    Article  CAS  PubMed  Google Scholar 

  11. Soiza-Reilly M, Commons KG (2011) Quantitative analysis of glutamatergic innervation of the mouse dorsal raphe nucleus using array tomography. J Comp Neurol 519(18):3802–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu W, Maitre EL, Fabre V et al (2010) Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 518:3464–3494

    Article  CAS  PubMed  Google Scholar 

  13. Brown R, McKenna JT, Winston S et al (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knock-in mice. Eur J Neurosci 27(2):352–363

    Article  PubMed  PubMed Central  Google Scholar 

  14. Michelsen KA, Prickaerts J, Steinbusch HW (2008) The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res 172:233–264

    Article  CAS  PubMed  Google Scholar 

  15. Johnson PL, Lowry C, Truitt W, Shekhar A (2008) Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of serotonergic neurons in the dorsal raphe nucleus following lactate-induced panic. J Psychopharmacol 22(6):642–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson PL, Hollis JH, Moratalla R, Lightman SL, Lowry CA (2005) Acute hypercarbic gas exposure reveals functionally distinct subpopulations of serotonergic neurons in rats. J Psychopharmacol 19(4):327–341

    Article  CAS  PubMed  Google Scholar 

  17. Spiga F, Lightman SL, Shekhar A, Lowry CA (2006) Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons. Neuroscience 138(4):1265–1276

    Article  CAS  PubMed  Google Scholar 

  18. Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133(4):983–997

    Article  CAS  PubMed  Google Scholar 

  19. Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 72(1):32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826(1):35–43

    Article  CAS  PubMed  Google Scholar 

  21. Spiacci A Jr, Coimbra NC, Zangrossi H Jr (2012) Differential involvment of dorsal raphe subnuclei in the regulation of anxiety- and panic-related defensive behaviors. Neuroscience 227:350–360

    Article  CAS  PubMed  Google Scholar 

  22. Zangrossi H Jr, Graeff FG (2014) Serotonin in anxiety and panic: contributions of the elevated T-maze. Neurosci Biobehav Rev 46(3):397–406

    Article  CAS  PubMed  Google Scholar 

  23. Vicente MA, Zangrossi H Jr (2014) Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology 79:127–135

    Article  CAS  PubMed  Google Scholar 

  24. Zanoveli JM, Pobbe RL, de Bortoli VC et al (2010) Facilitation of 5-HT1A-mediated neurotransmission in dorsal periaqueductal grey matter accounts for the panicolytic-like effect of chronic fluoxetine. Int J Neuropsychopharmacol 13(8):1079–1088

    Article  CAS  PubMed  Google Scholar 

  25. Pinheiro SN, Del-Ben CM, Zangrossi H Jr et al (2008) Anxiolytic and panicolytic effects of escitalopram in the elevated T-maze. J Psychopharmacol 22(2):132–137

    Article  CAS  PubMed  Google Scholar 

  26. Bandelow B, Michaelis S, Wedekind D (2017) Treatment of anxiety disorders. Dialogues Clin Neurosci 19(2):93–107

    PubMed  PubMed Central  Google Scholar 

  27. Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17024

    Article  PubMed  Google Scholar 

  28. Baldwin DS, Anderson IM, Nutt DJ, Allgulander C, Bandelow B, den Boer JA, Christmas DM, Davies S et al (2014) Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol 28(5):403–439

    Article  CAS  PubMed  Google Scholar 

  29. Matthiesen M, Spiacci A Jr, Zangrossi H Jr (2017) Effects of chemical stimulation of the lateral wings of the dorsal raphe nucleus on panic-like behaviors and Fos protein expression in rats. Behav Brain Res 326:103–111

    Article  CAS  PubMed  Google Scholar 

  30. Canteras NS, Graeff FG (2014) Executive and modulatory neural circuits of defensive reactions: implications for panic disorder. Neurosci Biobehav Rev 3:325–364

    Google Scholar 

  31. Schenberg LC, Schimitel FG, Armini RS et al (2014) Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 3:472–496

    Article  Google Scholar 

  32. Johnson PL, Shekhar A (2012) An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 107(5):686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McDevitt RA, Neumaier JF (2011) Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. J Chem Neuroanat 41(4):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Commons KG (2008) Evidence for topographically organized endogenous 5-HT1A receptor-dependent feedback inhibition of the ascending serotonin system. Eur J Neurosci 27(10):2611–2618

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hajós M, Hoffmann WE, Tetko IV, Hyland B, Sharp T, Villa AEP (2001) Different tonic regulation of neuronal activity in the rat dorsal raphe and medial prefrontal cortex via 5-HT(1A) receptors. Neurosci Lett 304(3):129–132

    Article  PubMed  Google Scholar 

  36. Spiacci A Jr, Pobbe RLH, Matthiesen M, Zangrossi H Jr (2016) 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses. Neuropharmacology 107:471–479

    Article  CAS  PubMed  Google Scholar 

  37. Haddjeri N, Lavoie N, Blier P (2004) Electrophysiological evidence for the tonic activation of 5-HT(1A) autoreceptors in the rat dorsal raphe nucleus. Neuropsychopharmacology 29(10):1800–1806

    Article  CAS  PubMed  Google Scholar 

  38. De Bortoli VC, Yamashita PS, Zangrossi H Jr (2013) 5-HT1A and 5-HT2A receptor control of a panic-like defensive response in the rat dorsomedial hypothalamic nucleus. J Psychopharmacol 27(12):1116–1123

    Article  CAS  PubMed  Google Scholar 

  39. Spiacci A Jr, Sergio TO, da Silva GS et al (2015) Serotonin in the dorsal periaqueductal gray inhibits panic-like defensive behaviors in rats exposed to acute hypoxia. Neurocience 304:191–198

    Article  CAS  Google Scholar 

  40. Zanoveli JM, Nogueira RL, Zangrossi H (2003) Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. Eur J Pharmacol 473:153–161

    Article  CAS  PubMed  Google Scholar 

  41. Schütz MT, de Aguiar JC, Graeff FG (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85(3):340–345

    Article  PubMed  Google Scholar 

  42. Vasudeva RK, Lin RC, Simpson KL et al (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41(4):281–293

    Article  CAS  PubMed  Google Scholar 

  43. Chanrion B, Mannoury la Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci 104(19):8119–8124

    Article  CAS  PubMed  Google Scholar 

  44. Kuhn DM, Arthur RE Jr (1996) Inactivation of brain tryptophan hydroxylase by nitric oxide. J Neurochem 67:1072–1077

    Article  CAS  PubMed  Google Scholar 

  45. Poltronieri SC, Zangrossi H Jr, de Barros VM (2003) Antipanic-like effect of serotonin reuptake inhibitors in the elevated T-maze. Behav Brain Res 147(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  46. Yamashita PS, Spiacci A Jr, Hassel JE Jr et al (2017) Desinhibition of the rat prelimbic cortex promotes serotonergic activation of dorsal raphe nucleus and panicolytic-like behavioral effects. J Psychopharmacol 31(6):704–714

    Article  CAS  PubMed  Google Scholar 

  47. Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  CAS  PubMed  Google Scholar 

  48. Paul ED, Johnson PL, Shekhar A et al (2014) The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev 3:379–396

    Article  CAS  Google Scholar 

  49. Roche M, Commons KG, Peoples A, Valentino RJ (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23(3):970–977

    Article  CAS  PubMed  Google Scholar 

  50. Rodrigo J, Springall DR, Uttenthal O (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc Lond Ser B Biol Sci 345(1312):175–221

    Article  CAS  Google Scholar 

  51. Johnson MD, Ma PM (1993) Localization of NADPH diaphorase activity in monoaminergic neurons of the rat brain. J Comp Neurol 332(4):391–406

    Article  CAS  PubMed  Google Scholar 

  52. Onstott D, Mayer B, Beitz AJ (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: analysis using laser confocal microscopy. Brain Res 610(2):317–324

    Article  CAS  PubMed  Google Scholar 

  53. Gualda LB, Martins GG, Muller B et al (2011) 5-HT1A autoreceptor modulation of locomotor activity induced by nitric oxide in the rat dorsal raphe nucleus. Braz J Med Biol Res 44(4):332–336

    Article  CAS  PubMed  Google Scholar 

  54. Miguel TL, Pobbe RL, Spiacci A Jr et al (2010) Dorsal raphe nucleus regulation of a panic-like defensive behavior evoked by chemical stimulation of the rat dorsal periaqueductal gray matter. Behav Brain Res 213(2):195–200

    Article  PubMed  Google Scholar 

  55. Braga AA, Aguiar DC, Guimarães FS (2009) Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus. Neurosci Lett 459(2):79–83

    Article  CAS  PubMed  Google Scholar 

  56. Moreira FA, Guimarães FS (2005) Role of serotonin receptors in panic-like behavior induced by nitric oxide in the rat dorsolateral periaqueductal gray: effects of chronic clomipramine treatment. Life Sci 77(16):1972–1982

    Article  CAS  PubMed  Google Scholar 

  57. Moreira FA, Guimarães FS (2004) Benzodiazepine receptor and serotonin 2A receptor modulate the aversive-like effects of nitric oxide in the dorsolateral periaqueductal gray of rats. Psychopharmacology 176(3–4):362–368

    Article  CAS  PubMed  Google Scholar 

  58. Grahn RE, Watkins LR, Maier SF (2000) Impaired escape performance and enhanced conditioned fear in rats following exposure to an uncontrollable stressor are mediated by glutamate and nitric oxide in the dorsal raphe nucleus. Behav Brain Res 112(1–2):33–41

    Article  CAS  PubMed  Google Scholar 

  59. De Oliveira RW, Del Bel EA, Guimarães FS (2000) Behavioral and c-fos expression changes induced by nitric oxide donors microinjected into the dorsal periaqueductal gray. Brain Res Bull 51:457–464

    Article  PubMed  Google Scholar 

  60. Beijamini V, Guimarães FS (2006) c-Fos expression increase in NADPH-diaphorase positive neurons after exposure to a live cat. Behav Brain Res 170(1):52–61

    Article  CAS  PubMed  Google Scholar 

  61. Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca ACB (2005) Role of nitric oxide in brain regions related to defensive reactions. Neurosci Biobehav Rev 29(8):1313–1322

    Article  CAS  PubMed  Google Scholar 

  62. Chiavegatto S, Scavone C, Canteras NS (1998) Nitric oxide synthase activity in the dorsal periaqueductal gray of rats expressing innate fear responses. Neuroreport 9(4):571–576

    Article  CAS  PubMed  Google Scholar 

  63. Day HE, Greenwood BN, Hammack SE et al (2004) Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474(3):364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG, Berton O (2013) Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 33(35):13978–13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tao R, Auerbach SB (2003) Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 961(1):109–120

    Article  CAS  PubMed  Google Scholar 

  66. Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14(2):100–113

    Article  CAS  PubMed  Google Scholar 

  67. Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225

    Article  CAS  PubMed  Google Scholar 

  68. Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J Pharmacol 39:357–364

    Article  CAS  PubMed  Google Scholar 

  69. Kirby LG, Lucki I (1997) Interaction between the forced swimming test and fluoxetine treatment on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the rat. J Pharmacol Exp Ther 282(2):967–976

    CAS  PubMed  Google Scholar 

  70. Kirby LG, Allen AR, Lucki I (1995) Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 682(1–2):189–196

    Article  CAS  PubMed  Google Scholar 

  71. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T (2018) A synaptic threshold mechanism for computing escape decisions. Nature 558(7711):590–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guiard BP, Mansari ME, Murphy DL, Blier P (2012) Altered response to the selective serotonin reuptake inhibitor escitalopram in mice heterozygous for the serotonin transporter: an electrophysiological and neurochemical study. Int J Neuropsychopharmacol 15(3):349–361

    Article  CAS  PubMed  Google Scholar 

  73. Guilloux JP, David DJ, Xia L et al (2011) Characterization of 5-HT(1A/1B)-/- mice: an animal model sensitive to anxiolytic treatments. Neuropharmacology 61(3):478–488

    Article  CAS  PubMed  Google Scholar 

  74. Kreiss DS, Lucki I (1995) Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274(2):866–876

    CAS  PubMed  Google Scholar 

  75. Piñeyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 58(3):533–591

    Google Scholar 

  76. Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcelullar localization of the 5-HT1A receptors and SERT. Phil Trans R Soc B 367:2416–2425

    Article  CAS  PubMed  Google Scholar 

  77. Castro M, Diaz A, del Olmo et al (2003) Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44(1):93–101

    Article  PubMed  Google Scholar 

  78. Hensler JG (2002) Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26(5):565–573

    Article  CAS  PubMed  Google Scholar 

  79. Blier P, El Mansari M (2013) Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond Ser B Biol Sci 368(1615):20120536

    Article  CAS  Google Scholar 

  80. De Bortoli VC, Nogueira RL, Zangrossi H Jr (2006) Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology 183(4):422–428

    Article  CAS  PubMed  Google Scholar 

  81. Mongeau R, Marsden CA (1997) Effect of imipramine treatments on the 5-HT1A-receptor-mediated inhibition of panic-like behaviours in rats. Psychopharmacology 131(4):321–328

    Article  CAS  PubMed  Google Scholar 

  82. Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52(1):1–6

    Article  CAS  PubMed  Google Scholar 

  83. Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct Funct 221(1):535–561

    Article  CAS  PubMed  Google Scholar 

  84. Stezhka VV, Lovick TA (1997) Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Neurosci Lett 230(1):57–60

    Article  CAS  PubMed  Google Scholar 

  85. Vasudeva RK, Waterhouse BD (2014) Cellular profile of the dorsal raphe lateral wing sub-region: relationship to the lateral dorsal tegmental nucleus. J Chem Neuroanat 57-58:15–23

    Article  CAS  PubMed  Google Scholar 

  86. Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103(5):2652–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Payet JM, Burnie E, Sathananthan NJ, Russo AM, Lawther AJ, Kent S, Lowry CA, Hale MW (2018) Exposure to acute and chronic fluoxetine has differential effects on sociability and activity of serotonergic neurons in the dorsal raphe nucleus of juvenile male BALB/c mice. Neuroscience 386:1–15

    Article  CAS  PubMed  Google Scholar 

  88. Hassell JE, Yamashita PSM, Johnson PL et al (2017) Stress, panic, and central serotonergic inhibition. In: Stress: neuroendocrinology and neurobiology. Elsevier, Amsterdam, pp. 153–164

    Chapter  Google Scholar 

  89. Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  90. Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116(3):669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beck SG, Pan Y, Akanwa AC (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91(2):994–1005

    Article  PubMed  Google Scholar 

  92. Zanoveli JM, Nogueira RL, Zangrossi H Jr (2007) Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52(4):1188–1195

    Article  CAS  PubMed  Google Scholar 

  93. Zanoveli JM, Nogueira RL, Zangrossi H Jr (2005) Chronic imipramine treatment sensitizes 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray matter: evidence from the elevated T-maze test of anxiety. Behav Pharmacol 16(7):543–552

    Article  CAS  PubMed  Google Scholar 

  94. Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM (2013) Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci 4(1):72–83

    Article  CAS  PubMed  Google Scholar 

  95. Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22(10):1406–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Afonso Paulo Padovan and Tadeu Franco Vieira for the helpful technical support.

Funding

This work was supported by research grants from the Research Foundation of the State of São Paulo (FAPESP; HHVC, Grant Number 2017/18437-7; 2013/05903-9); the National Council of Science and Technology, Brazil (CNPq); and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio Zangrossi Jr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilela-Costa, H.H., Spiacci, A., Bissolli, I.G. et al. A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats. Mol Neurobiol 56, 6487–6500 (2019). https://doi.org/10.1007/s12035-019-1536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1536-z

Keywords

Navigation