Skip to main content

Advertisement

Log in

CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

CNS:

Central nervous system

CTGF/CCN2:

Connective tissue growth factor

DMD:

Duchenne muscular dystrophy

ECM:

Extracellular matrix

PNS:

Peripheral nervous system

TGF-β:

Transforming growth factor type β

References

  1. Perbal B (2001) NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 54:57–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  3. Welch MD, Howlett M, Halse HM, Greene WK, Kees UR (2015) Novel CT domain-encoding splice forms of CTGF/CCN2 are expressed in B-lineage acute lymphoblastic leukaemia. Leuk Res 39:913–920

    Article  CAS  PubMed  Google Scholar 

  4. Kaasboll OJ, Gadicherla AK, Wang JH, Monsen VT, Hagelin EMV, Dong MQ, Attramadal H (2018) Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J Biol Chem 293:17953–17970

    Article  PubMed  Google Scholar 

  5. Perbal B, Tweedie S, Bruford E (2018) The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J Cell Commun Signal 12:625–629

    Article  PubMed  PubMed Central  Google Scholar 

  6. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733

    Article  CAS  PubMed  Google Scholar 

  7. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53:853–861

    Article  CAS  PubMed  Google Scholar 

  8. Lasky JA, Ortiz LA, Tonthat B, Hoyle GW, Corti M, Athas G, Lungarella G, Brody A et al (1998) Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. Am J Phys 275:L365–L371

    CAS  Google Scholar 

  9. Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E (2013) Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22:4938–4951

    Article  CAS  PubMed  Google Scholar 

  10. Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Ba N et al (1999) Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology 30:968–976

    Article  CAS  PubMed  Google Scholar 

  11. Astolfi A, De Giovanni C, Landuzzi L, Nicoletti G, Ricci C, Croci S, Scopece L, Nanni P et al (2001) Identification of new genes related to the myogenic differentiation arrest of human rhabdomyosarcoma cells. Gene 274:139–149

    Article  CAS  PubMed  Google Scholar 

  12. Croci S, Landuzzi L, Astolfi A, Nicoletti G, Rosolen A, Sartori F, Follo MY, Oliver N et al (2004) Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells. Cancer Res 64:1730–1736

    Article  CAS  PubMed  Google Scholar 

  13. Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E (2008) Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 215:410–421

    Article  CAS  PubMed  Google Scholar 

  14. Nishida T, Kubota S, Aoyama E, Janune D, Lyons KM, Takigawa M (2015) CCN family protein 2 (CCN2) promotes the early differentiation, but inhibits the terminal differentiation of skeletal myoblasts. J Biochem 157:91–100

    Article  CAS  PubMed  Google Scholar 

  15. Maeda N, Kanda F, Okuda S, Ishihara H, Chihara K (2005) Transforming growth factor-beta enhances connective tissue growth factor expression in L6 rat skeletal myotubes. Neuromuscul Disord 15:790–793

    Article  PubMed  Google Scholar 

  16. Acuña MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, Munoz-Canoves P, Santos RA et al (2014) Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet 23:1237–1249

    Article  CAS  PubMed  Google Scholar 

  17. Mezzano V, Cabrera D, Vial C, Brandan E (2007) Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to TGF-beta and CTGF/CCN2. J Cell Commun Signal 1:205–217

    Article  PubMed  Google Scholar 

  18. Bruno G, Cencetti F, Pertici I, Japtok L, Bernacchioni C, Donati C, Bruni P (2015) CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: Implications in the action mechanism of TGFbeta. Biochim Biophys Acta 1851:194–202

    Article  CAS  PubMed  Google Scholar 

  19. Magnusson C, Svensson A, Christerson U, Tagerud S (2005) Denervation-induced alterations in gene expression in mouse skeletal muscle. Eur J Neurosci 21:577–580

    Article  PubMed  Google Scholar 

  20. Kivela R, Kyrolainen H, Selanne H, Komi PV, Kainulainen H, Vihko V (2007) A single bout of exercise with high mechanical loading induces the expression of Cyr61/CCN1 and CTGF/CCN2 in human skeletal muscle. J Appl Physiol (1985) 103:1395–1401

    Article  CAS  Google Scholar 

  21. Liu F, Tang W, Chen D, Li M, Gao Y, Zheng H, Chen S (2016) Expression of TGF-beta1 and CTGF is associated with fibrosis of denervated sternocleidomastoid muscles in mice. Tohoku J Exp Med 238:49–56

    Article  CAS  PubMed  Google Scholar 

  22. Song Y, Yao S, Liu Y, Long L, Yang H, Li Q, Liang J, Li X et al (2017) Expression levels of TGF-beta1 and CTGF are associated with the severity of Duchenne muscular dystrophy. Exp Ther Med 13:1209–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun G, Haginoya K, Wu Y, Chiba Y, Nakanishi T, Onuma A, Sato Y, Takigawa M et al (2008) Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy. J Neurol Sci 267:48–56

    Article  CAS  PubMed  Google Scholar 

  24. Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E (2011) CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. J Pathol 225:490–501

    Article  CAS  PubMed  Google Scholar 

  25. Cabello-Verrugio C, Morales MG, Cabrera D, Vio CP, Brandan E (2012) Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med 16:752–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morales MG, Acuna MJ, Cabrera D, Goldschmeding R, Brandan E (2018) The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J Cell Commun Signal 12:413–421

    Article  PubMed  Google Scholar 

  27. Gonzalez D, Rebolledo DL, Correa LM, Court FA, Cerpa W, Lipson KE, van Zundert B, Brandan E (2018) The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Hum Mol Genet 27:2913–2926

    Article  CAS  PubMed  Google Scholar 

  28. Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, Saffari A, Leask A et al (2017) Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med 214:681–697

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spliet WG, Aronica E, Ramkema M, Aten J, Troost D (2003) Increased expression of connective tissue growth factor in amyotrophic lateral sclerosis human spinal cord. Acta Neuropathol (Berl) 106:449–457

    Article  CAS  Google Scholar 

  31. Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, van Zundert B, Brandan E (2017) ALS skeletal muscle shows enhanced TGF-beta signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One 12:e0177649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Contreras O, Rebolledo DL, Oyarzun JE, Olguin HC, Brandan E (2016) Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 364:647–660

    Article  CAS  PubMed  Google Scholar 

  33. Kondo Y, Nakanishi T, Takigawa M, Ogawa N (1999) Immunohistochemical localization of connective tissue growth factor in the rat central nervous system. Brain Res 834:146–151

    Article  CAS  PubMed  Google Scholar 

  34. Albrecht C, von Der Kammer H, Mayhaus M, Klaudiny J, Schweizer M, Nitsch RM (2000) Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61. J Biol Chem 275:28929–28936

    Article  CAS  PubMed  Google Scholar 

  35. Heuer H, Christ S, Friedrichsen S, Brauer D, Winckler M, Bauer K, Raivich G (2003) Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119:43–52

    Article  CAS  PubMed  Google Scholar 

  36. Hertel M, Tretter Y, Alzheimer C, Werner S (2000) Connective tissue growth factor: a novel player in tissue reorganization after brain injury? Eur J Neurosci 12:376–380

    Article  CAS  PubMed  Google Scholar 

  37. Schwab JM, Postler E, Nguyen TD, Mittelbronn M, Meyermann R, Schluesener HJ (2000) Connective tissue growth factor is expressed by a subset of reactive astrocytes in human cerebral infarction. Neuropathol Appl Neurobiol 26:434–440

    Article  CAS  PubMed  Google Scholar 

  38. Schwab JM, Beschorner R, Nguyen TD, Meyermann R, Schluesener HJ (2001) Differential cellular accumulation of connective tissue growth factor defines a subset of reactive astrocytes, invading fibroblasts, and endothelial cells following central nervous system injury in rats and humans. J Neurotrauma 18:377–388

    Article  CAS  PubMed  Google Scholar 

  39. Conrad S, Schluesener HJ, Adibzahdeh M, Schwab JM (2005) Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells. J Neurosurg Spine 2:319–326

    Article  PubMed  Google Scholar 

  40. Li Q, Chen J, Chen Y, Cong X, Chen Z (2016) Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia. Mol Med Rep 13:2393–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Kong QJ, Sun JC, Yang Y, Wang HB, Zhang Q, Shi JG (2018) Lentivirus-mediated silencing of the CTGF gene suppresses the formation of glial scar tissue in a rat model of spinal cord injury. Spine J 18:164–172

    Article  PubMed  Google Scholar 

  42. Ueberham U, Ueberham E, Gruschka H, Arendt T (2003) Connective tissue growth factor in Alzheimer’s disease. Neuroscience 116:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Z, Ho L, Wang J, Qin W, Festa ED, Mobbs C, Hof P, Rocher A et al (2005) Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer’s disease beta-amyloid neuropathology. FASEB J 19:2081–2082

    Article  CAS  PubMed  Google Scholar 

  44. McClain JA, Phillips LL, Fillmore HL (2009) Increased MMP-3 and CTGF expression during lipopolysaccharide-induced dopaminergic neurodegeneration. Neurosci Lett 460:27–31

    Article  CAS  PubMed  Google Scholar 

  45. Yang CN, Wu MF, Liu CC, Jung WH, Chang YC, Lee WP, Shiao YJ, Wu CL et al (2017) Differential protective effects of connective tissue growth factor against Abeta neurotoxicity on neurons and glia. Hum Mol Genet 26:3909–3921

    Article  CAS  PubMed  Google Scholar 

  46. Khodosevich K, Lazarini F, von Engelhardt J, Kaneko H, Lledo PM, Monyer H (2013) Connective tissue growth factor regulates interneuron survival and information processing in the olfactory bulb. Neuron 79:1136–1151

    Article  CAS  PubMed  Google Scholar 

  47. Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A et al (2009) Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 12:418–427

    Article  CAS  PubMed  Google Scholar 

  48. Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dombrowski Y, O'Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, Fleville S, Eleftheriadis G et al (2017) Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 20:674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su BY, Cai WQ, Zhang CG, Martinez V, Lombet A, Perbal B (2001) The expression of ccn3 (nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol Pathol 54:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de la Vega Gallardo N, Dittmer M, Dombrowski Y, Fitzgerald DC (2018) Regenerating CNS myelin: Emerging roles of regulatory T cells and CCN proteins. Neurochem Int. https://doi.org/10.1016/j.neuint.2018.11.024

  52. Lamond R, Barnett SC (2013) Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor. J Neurosci 33:18686–18697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma AD, Wiederin J, Uz M, Ciborowski P, Mallapragada SK, Gendelman HE, Sakaguchi DS (2017) Proteomic analysis of mesenchymal to Schwann cell transdifferentiation. J Proteome 165:93–101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by CONICYT AFB170005 and FONDECYT 1150106 to E.B., and Beca de Doctorado Nacional from CONICYT to D.G. The funding agencies had no role in the design of the study, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Brandan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, D., Brandan, E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Mol Neurobiol 56, 5911–5916 (2019). https://doi.org/10.1007/s12035-019-1490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1490-9

Keywords

Navigation