Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471
CAS
Article
PubMed
Google Scholar
Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. https://doi.org/10.1126/science.1134108
CAS
Article
PubMed
Google Scholar
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611. https://doi.org/10.1016/j.bbrc.2006.10.093
CAS
Article
PubMed
Google Scholar
Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007. https://doi.org/10.1016/S1474-4422(10)70195-2
CAS
Article
PubMed
Google Scholar
Millecamps S, Salachas F, Cazeneuve C, Gordon P, Bricka B, Camuzat A, Guillot-Noël L, Russaouen O et al (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47:554–560. https://doi.org/10.1136/jmg.2010.077180
CAS
Article
PubMed
Google Scholar
Müller K, Brenner D, Weydt P et al (2018) Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-317611
Article
Google Scholar
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106:18809–18814. https://doi.org/10.1073/pnas.0908767106
Article
PubMed
PubMed Central
Google Scholar
Xu Y-F, Gendron TF, Zhang Y-J, Lin WL, D'Alton S, Sheng H, Casey MC, Tong J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859. https://doi.org/10.1523/JNEUROSCI.1630-10.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Scotter EL, Chen H-J, Shaw CE (2015) TDP-43 Proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurother J Am Soc Exp Neurother 12:352–363. https://doi.org/10.1007/s13311-015-0338-x
CAS
Article
Google Scholar
Ederle H, Dormann D (2017) TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett. https://doi.org/10.1002/1873-3468.12646
CAS
Article
PubMed
Google Scholar
Svahn AJ, Don EK, Badrock AP, Cole NJ, Graeber MB, Yerbury JJ, Chung R, Morsch M (2018) Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol (Berl) 136:445–459. https://doi.org/10.1007/s00401-018-1875-2
CAS
Article
Google Scholar
Birsa N, Bentham MP, Fratta P (2019) Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2019.05.023
Baloh RH (2011) TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration: Protein autoregulation mechanisms. FEBS J 278:3539–3549. https://doi.org/10.1111/j.1742-4658.2011.08256.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Blokhuis AM, Groen EJN, Koppers M, van den Berg L, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 125:777–794. https://doi.org/10.1007/s00401-013-1125-6
CAS
Article
Google Scholar
Buratti E (2018) TDP-43 post-translational modifications in health and disease. Expert Opin Ther Targets 22:279–293. https://doi.org/10.1080/14728222.2018.1439923
CAS
Article
PubMed
Google Scholar
Dangoumau A, Veyrat-Durebex C, Blasco H et al (2013) Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 123:366–374. https://doi.org/10.3109/00207454.2012.761984
CAS
Article
PubMed
Google Scholar
Dangoumau A, Marouillat S, Burlaud Gaillard J et al (2015) Inhibition of pathogenic mutant SOD1 aggregation in cultured motor neuronal cells by prevention of its SUMOylation on lysine 75. Neurodegener Dis. https://doi.org/10.1159/000439254
Article
PubMed
Google Scholar
Oh S-M, Liu Z, Okada M, Jang SW, Liu X, Chan CB, Luo H, Ye K (2010) Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity. Oncogene 29:1017–1030. https://doi.org/10.1038/onc.2009.411
CAS
Article
PubMed
Google Scholar
Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413
Article
PubMed
PubMed Central
Google Scholar
Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura K, Sodeoka M et al (2009) Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol 16:133–140. https://doi.org/10.1016/j.chembiol.2009.01.009
CAS
Article
PubMed
Google Scholar
Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580:4353–4356. https://doi.org/10.1016/j.febslet.2006.06.092
CAS
Article
PubMed
Google Scholar
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25. https://doi.org/10.3389/fnmol.2019.00025
CAS
Article
PubMed
PubMed Central
Google Scholar
Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. https://doi.org/10.1093/hmg/ddq137
CAS
Article
PubMed
PubMed Central
Google Scholar
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H et al (2018) Causative genes in amyotrophic lateral sclerosis and protein degradation pathways: a link to neurodegeneration. Mol Neurobiol 55:6480–6499. https://doi.org/10.1007/s12035-017-0856-0
CAS
Article
PubMed
Google Scholar
Pandey D, Chen F, Patel A, Wang CY, Dimitropoulou C, Patel VS, Rudic RD, Stepp DW et al (2011) SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arterioscler Thromb Vasc Biol 31:1634–1642. https://doi.org/10.1161/ATVBAHA.111.226621
CAS
Article
PubMed
PubMed Central
Google Scholar
Gu X, Sun J, Li S, Wu X, Li L (2013) Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging 34:1069–1079. https://doi.org/10.1016/j.neurobiolaging.2012.10.013
CAS
Article
PubMed
Google Scholar
Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550. https://doi.org/10.1038/sj.cdd.4401769
CAS
Article
PubMed
Google Scholar
Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323:256–259. https://doi.org/10.1126/science.1166226
CAS
Article
PubMed
PubMed Central
Google Scholar
Casas C, Herrando-Grabulosa M, Manzano R, Mancuso R, Osta R, Navarro X (2013) Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain Behav 3:145–158. https://doi.org/10.1002/brb3.104
Article
PubMed
PubMed Central
Google Scholar
Bogachek MV, Park JM, De Andrade JP et al (2016) Inhibiting the SUMO pathway represses the cancer stem cell population in breast and colorectal carcinomas. Stem Cell Rep 7:1140–1151. https://doi.org/10.1016/j.stemcr.2016.11.001
CAS
Article
Google Scholar
Casas C, Manzano R, Vaz R, Osta R, Brites D (2016) Synaptic failure: focus in an integrative view of ALS. Brain Plast Amst Neth 1:159–175. https://doi.org/10.3233/BPL-140001
Article
Google Scholar
Andrés-Benito P, Moreno J, Aso E et al (2017) Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration. Aging 9:823–851. https://doi.org/10.18632/aging.101195
Article
PubMed
PubMed Central
Google Scholar
Hu J-H, Zhang H, Wagey R, Krieger C, Pelech SL (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 85:432–442. https://doi.org/10.1046/j.1471-4159.2003.01670.x
CAS
Article
PubMed
Google Scholar
Szelechowski M, Amoedo N, Obre E, Léger C, Allard L, Bonneu M, Claverol S, Lacombe D et al (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep 8:3953. https://doi.org/10.1038/s41598-018-22318-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Taylor JP (2017) Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96:285–297. https://doi.org/10.1016/j.neuron.2017.07.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, Tatzelt J, Mann M et al (2016) Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351:173–176. https://doi.org/10.1126/science.aad2033
CAS
Article
PubMed
Google Scholar
Walker AK, Spiller KJ, Ge G, Zheng A, Xu Y, Zhou M, Tripathy K, Kwong LK et al (2015) Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol (Berl) 130:643–660. https://doi.org/10.1007/s00401-015-1460-x
CAS
Article
Google Scholar
Zheng M, Shi Y, Fan D (2013) Nuclear TAR DNA-binding protein 43: a new target for amyotrophic lateral sclerosis treatment. Neural Regen Res 8:3284. https://doi.org/10.3969/j.issn.1673-5374.2013.35.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao X (2018) SUMO-mediated regulation of nuclear functions and signaling processes. Mol Cell 71:409–418. https://doi.org/10.1016/j.molcel.2018.07.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci U S A 100:3257–3262. https://doi.org/10.1073/pnas.0637114100
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong Y, Chen Y (2018) The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis. https://nnjournal.net/article/view/2401. Accessed 23 Jan 2019
Marcelli S, Ficulle E, Piccolo L, Corbo M, Feligioni M (2018) An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacol Res 130:420–437. https://doi.org/10.1016/j.phrs.2017.12.023
CAS
Article
PubMed
Google Scholar