Abstract
During cerebral ischemia, oxygen and glucose levels decrease, producing many consequences such as the generation of reactive oxygen species, tissue injury, and the general metabolism collapse. Resveratrol triggers signaling dependent on the protein kinase activated by adenosine monophosphate (AMPK), the sensor of cellular energy metabolism that regulates autophagy, eliminates damaged mitochondria, and increases energy sources. In the present study, we investigated the participation of AMPK activation in the protective effect of resveratrol on cerebral ischemia and excitotoxicity. We found that resveratrol increased the levels of phosphorylated AMPK in the cerebral cortex of rats subjected to middle cerebral artery occlusion (MCAO) and in primary cultured neurons exposed to glutamate-induced excitotoxicity. Resveratrol (1.8 mg/Kg; i. v.; administered at the beginning of reperfusion) decreased the infarct area and increased survival of rats subjected to MCAO. In neuronal cultures, resveratrol treatment (40 μM, after excitotoxicity) reduced the production of superoxide anion, prevented the overload of intracellular Ca+2 associated to mitochondrial failure, reduced the release of the lactate dehydrogenase enzyme, and reduced death. It also promoted mitophagy (increased Beclin 1 level, favored the recruitment of LC3-II, reduced LAMP1, and reduced mitochondrial matrix protein HSP60 levels). In both models, inhibition of AMPK activation with Compound C obstructed the effect of resveratrol, showing that its protective effect depends, partially, on the activation of the AMPK/autophagy pathway.
This is a preview of subscription content, access via your institution.








References
Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568. https://doi.org/10.1152/physrev.1999.79.4.1431
Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. https://doi.org/10.1016/j.neuron.2010.07.002
Nicholls DG, Ward (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. 23:166–174
Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205. https://doi.org/10.1097/00004647-199802000-00011
Nour M, Scalzo F, Liebeskind DS (2013) Ischemia-reperfusion injury in stroke. Interv Neurol 1:185–199. https://doi.org/10.1159/000353125
Pineda-Ramírez N, Gutiérrez Aguilar GF, Espinoza-Rojo M, Aguilera P (2018) Current evidence for AMPK activation involvement on resveratrol-induced neuroprotection in cerebral ischemia. Nutr Neurosci 21:229–247. https://doi.org/10.1080/1028415X.2017.1284361
Madrigal-Perez LA, Ramos-Gomez M (2016) Resveratrol inhibition of cellular respiration: new paradigm for an old mechanism. Int J Mol Sci 17. https://doi.org/10.3390/ijms17030368
Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. 26:. https://doi.org/10.1016/j.tcb.2015.10.013
McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV (2005) Pharmacological Inhibition of AMP-activated Protein Kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502. https://doi.org/10.1074/jbc.m409985200
Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152
Gabryel B, Kost A, Kasprowska D (2012) Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies? Pharmacol Reports 64:1–15. https://doi.org/10.1016/S1734-1140(12)70725-9
Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M (2018) Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res Ther 9:1–16. https://doi.org/10.1186/s13287-018-1060-5
Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The Ketone Body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609. https://doi.org/10.1007/s11064-015-1700-4
Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222. https://doi.org/10.4161/15548627.2014.981787
Cui D, Sun D, Wang X, Yi L, Kulikowicz E, Reyes M, Zhu J, Yang ZJ et al (2017) Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 8:e2919. https://doi.org/10.1038/cddis.2017.318
Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci 104:7217–7222. https://doi.org/10.1073/pnas.0610068104
Song J, Huang Y, Zheng W, Yan J, Cheng M, Zhao R, Chen L, Hu C et al (2018) Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway. Front Med 12:697–706. https://doi.org/10.1007/s11684-018-0655-7
Rezabakhsh A, Fathi F, Bagheri HS, Malekinejad H, Montaseri A, Rahbarghazi R, Garjani A (2018) Silibinin protects human endothelial cells from high glucose-induced injury by enhancing autophagic response. J Cell Biochem 119:8084–8094. https://doi.org/10.1002/jcb.26735
Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A (2019) Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine 56:183–193. https://doi.org/10.1016/j.phymed.2018.11.008
Longa EZ, Weinstein P, Carlson S, Cummins R (1989) Reversible middle cerebral atery occlusion without craniectomy in rats. 84–91
Rasband WS (1997) ImageJ. U S Natl Institutes Heal Bethesda, Maryland, USA
Fath T, Ke YD, Gunning P, Götz J, Ittner LM (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 4:78–85. https://doi.org/10.1038/nprot.2008.199
Dallwig R, Deitmer JW (2002) Cell-type specific calcium responses in acute rat hippocampal slices. J Neurosci Methods 116:77–87. https://doi.org/10.1016/S0165-0270(02)00030-4
Weisova P, Prehn JHM, Concannon CG et al (2009) Regulation of glucose transporter 3 surface expression by the AMP-activated Protein Kinase mediates tolerance to glutamate excitation in neurons. J Neurosci 29:2997–3008. https://doi.org/10.1523/jneurosci.0354-09.2009
Wu Y, Li X, Zhu JX, Xie W, le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. NeuroSignals 19:163–174. https://doi.org/10.1159/000328516
Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2009) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. https://doi.org/10.1038/nature06639.Autophagy
Nakata R, Takahashi S, Inoue H (2012) Recent advances in the study on resveratrol. Biol Pharm Bull 35:273–279
Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8:250. https://doi.org/10.3390/nu8050250
Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003
Ferretta A, Gaballo A, Tanzarella P et al (2014) Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta - Mol Basis Dis 1842:902–915. https://doi.org/10.1016/j.bbadis.2014.02.010
Gambini J, Inglés M, Olaso G, et al (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev 2015:. https://doi.org/10.1155/2015/837042
Madreiter-Sokolowski CT, Gottschalk B, Parichatikanond W, Eroglu E, Klec C, Waldeck-Weiermair M, Malli R, Graier WF (2016) Resveratrol specifically kills cancer cells by a devastating increase in the Ca 2+ coupling between the greatly tethered endoplasmic reticulum and mitochondria. Cell Physiol Biochem 39:1404–1420. https://doi.org/10.1159/000447844
Madreiter-Sokolowski CT, Sokolowski AA, Graier WF (2017) Dosis facit sanitatem—concentration-dependent effects of resveratrol on mitochondria. Nutrients 9:1–19. https://doi.org/10.3390/nu9101117
Wan D, Zhou Y, Wang K et al (2016) Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 121:255–262. https://doi.org/10.1016/j.brainresbull.2016.02.011
Tian J, Cheng J, Zhang J, Ye L, Zhang F, Dong Q, Wang H, Fu F (2014) Protection of pyruvate against glutamate excitotoxicity is mediated by regulating DAPK1 protein complex. PLoS One 9:e95777. https://doi.org/10.1371/journal.pone.0095777
Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of sirt1 enzyme activity. Chem Biol Drug Des 74:619–624. https://doi.org/10.1111/j.1747-0285.2009.00901.x
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285:8340–8351. https://doi.org/10.1074/jbc.M109.088682
Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109. https://doi.org/10.1038/ncb1007-1102
Das J, Ramani R, Suraju MO (2016) Polyphenol compounds and PKC signaling. Biochim Biophys Acta - Gen Subj 1860:2107–2121. https://doi.org/10.1016/j.bbagen.2016.06.022
Ríos JA, Godoy JA, Inestrosa NC (2018) Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis. Cell Commun Signal 16:1–12. https://doi.org/10.1186/s12964-018-0227-0
Lin CJ, Chen TH, Yang LY, Shih CM (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5:e1147–e1111. https://doi.org/10.1038/cddis.2014.123
Wang H, Zhou H, Zou Y, Liu Q, Guo C, Gao G, Shao C, Gong Y (2010) Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol 80:1386–1395. https://doi.org/10.1016/j.bcp.2010.07.034
Kou X, Chen N (2017) Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients 9. https://doi.org/10.3390/nu9090927
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K (2018) The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium 70:32–46. https://doi.org/10.1016/j.ceca.2017.08.005
McCalley AE, Kaja S, Payne AJ, Koulen P (2014) Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 19:7327–7340. https://doi.org/10.3390/molecules19067327
Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20:7208–7219. https://doi.org/10.1523/jneurosci.20-19-07208.2000
Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482
Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060. https://doi.org/10.1038/nature07813
Pan S, Li S, Hu Y et al (2016) Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia. Oncotarget 7. https://doi.org/10.18632/oncotarget.13018
Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477
Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. https://doi.org/10.1016/j.jceh.2014.04.001
Li Z, Han X (2018) Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem 399:1339–1350. https://doi.org/10.1515/hsz-2018-0269
Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313:453–458. https://doi.org/10.1016/j.bbrc.2003.07.023
Yan P, Bai L, Lu W, Gao Y, Bi Y, Lv G (2017) Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage. Iran J Basic Med Sci 20:1029–1036. https://doi.org/10.22038/IJBMS.2017.9272
Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z et al (2017) Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience 348:241–251. https://doi.org/10.1016/j.neuroscience.2017.02.027
Wang YJ, Chan MH, Chen L, Wu SN, Chen HH (2016) Resveratrol attenuates cortical neuron activity: roles of large conductance calcium-activated potassium channels and voltage-gated sodium channels. J Biomed Sci 23:1–9. https://doi.org/10.1186/s12929-016-0259-y
Alayev A, Sun Y, Snyder RB, Berger SM, Yu JJ, Holz MK (2014) Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells. Cell Cycle 13:371–382. https://doi.org/10.4161/cc.27355
Ganley IG, Lam DH, Wang J et al (2009) ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305. https://doi.org/10.1074/jbc.M900573200
Hosokawa N, Sasaki T, Iemura SI, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979. https://doi.org/10.4161/auto.5.7.9296
Park D, Noh J, Ryu SH et al (2016) Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 6:1–11. https://doi.org/10.1038/srep21772
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003
Yamamoto A, Yue Z (2014) Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci 37:55–78. https://doi.org/10.1146/annurev-neuro-071013-014149
Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1–13. https://doi.org/10.3390/ijms18091865
Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18. https://doi.org/10.1016/j.ymeth.2014.11.021
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/physrev.00030.2009
Kim I, Lemasters JJ (2010) Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Physiol 300:C308–C317. https://doi.org/10.1152/ajpcell.00056.2010
Wu SB, Wu YT, Wu TP, Wei YH (2014) Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta - Gen Subj 1840:1331–1344. https://doi.org/10.1016/j.bbagen.2013.10.034
Acknowledgements
This work was supported by the CONACYT (grant number CB-2012-01-182266). Anayeli Narayana Pineda-Ramírez is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and receiver scholarship (Number 484304) from CONACYT.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Highlights
• Activation of AMPK by resveratrol prevents damage in cerebral ischemia
• Excitotoxicity in neuronal cultures is reduced by resveratrol through AMPK activation
• AMPK promotes autophagy and protects neurons from excitotoxicity
Electronic supplementary material
Figure S1
(PNG 2546 kb)
Rights and permissions
About this article
Cite this article
Pineda-Ramírez, N., Alquisiras-Burgos, I., Ortiz-Plata, A. et al. Resveratrol Activates Neuronal Autophagy Through AMPK in the Ischemic Brain. Mol Neurobiol 57, 1055–1069 (2020). https://doi.org/10.1007/s12035-019-01803-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-019-01803-6
Keywords
- AMPK
- Resveratrol
- Autophagy
- Excitotoxicity
- MCAO