Skip to main content

Advertisement

Log in

Intravitreal S100B Injection Triggers a Time-Dependent Microglia Response in a Pro-Inflammatory Manner in Retina and Optic Nerve

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

S100B is a glial protein, which belongs to calcium-binding protein family. Alterations of S100B level were noted in various neurodegenerative diseases. In a new glaucoma-like animal model S100B was injected intravitreally, which led to neuronal degeneration in retina and optic nerve. The pathological mechanisms are still unknown. Therefore, S100B protein was intravitreally injected in rats. At days 14 and 21, retina, optic nerve, serum, and aqueous humor were investigated. S100B injection led to an increase of retinal NF-κB at day 14. Furthermore, higher IL-1β levels in retina, serum, and aqueous humor were measured. A co-localization of microglia and IL-1β was noted, which correlated with an increased microglia response in retina and optic nerve at day 14. At the same point in time, more apoptotic RGCs and a decline in RGC numbers were observed. At 21 days, this damage was still present, but no signal pathway activations were detectable anymore. Interestingly, macroglia were not affected at any point in time. We conclude that S100B activated the NF-κB signal pathway, which then regulated IL-1β production and release from microglia. A positive feedback loop of IL-1β likely stimulates microglia in a pro-inflammatory manner. These microglia probably induce apoptotic damage in retina and optic nerve. Meanwhile, the injected S100B protein was naturally degraded, which explains the resting state of the pro-inflammatory signal pathways with constant damage later on. The inhibition of S100B release or microglia response could potentially decrease the damage in degenerative diseases, like glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I (2012) Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 40(4):341–349

    PubMed  Google Scholar 

  2. Grus FH, Boehm N, Beck S, Schlich M, Lossbrandt U, Pfeiffer N (2010) Autoantibody profiles in tear fluid as a diagnostic tool in glaucoma. Invest Ophthalmol Vis Sci 51(5):6110

    Google Scholar 

  3. Lorenz K, Beck S, Keilani MM, Wasielica-Poslednik J, Pfeiffer N, Grus FH (2017) Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin Exp Ophthalmol 45(3):280–287

    PubMed  Google Scholar 

  4. Wax MB, Tezel G, Kawase K, Kitazawa Y (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology. 108(2):296–302

    CAS  PubMed  Google Scholar 

  5. Tezel G, Hernandez R, Wax MB (2000) Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol 118(4):511–518

    CAS  PubMed  Google Scholar 

  6. Chong ZZ, Changyaleket B, Xu H, Dull RO, Schwartz DE (2016) Identifying S100B as a biomarker and a therapeutic target for brain injury and multiple diseases. Curr Med Chem 23(15):1571–1596

    CAS  PubMed  Google Scholar 

  7. Sakai M, Sakai H, Nakamura Y, Fukuchi T, Sawaguchi S (2003) Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jpn J Ophthalmol 47(1):42–52

    CAS  PubMed  Google Scholar 

  8. Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, Mathew R, McHam ML et al (2018) Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 9(1):3209

    PubMed  PubMed Central  Google Scholar 

  9. Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ (2008) Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 28(46):12085–12096

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Joachim SC, Grus FH, Kraft D, White-Farrar K, Barnes G, Barbeck M, Ghanaati S, Cao S et al (2009) Complex antibody profile changes in an experimental autoimmune glaucoma animal model. Invest Ophthalmol Vis Sci 50(10):4734–4742

    PubMed  Google Scholar 

  11. Donaldson C, Barber KR, Kay CM, Shaw GS (1995) Human S100b protein: formation of a tetramer from synthetic calcium-binding site peptides. Protein Sci 4(4):765–772

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793(6):1008–1022

    CAS  PubMed  Google Scholar 

  13. Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I et al (2013) S100B protein in tissue development, repair and regeneration. World J Biol Chem 4:1):1–1)12

    PubMed  PubMed Central  Google Scholar 

  14. Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    CAS  PubMed  Google Scholar 

  15. Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200

    CAS  PubMed  Google Scholar 

  17. Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A (2016) S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 53(6):3976–3991

    CAS  PubMed  Google Scholar 

  18. Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ (2011) S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-kappaB signaling. J Neurochem 117(2):321–332

    CAS  PubMed  Google Scholar 

  19. Tezel G, Yang X, Luo C, Cai J, Powell DW (2012) An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest Ophthalmol Vis Sci 53(7):4220–4233

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Casola C, Schiwek JE, Reinehr S, Kuehn S, Grus FH, Kramer M, Dick HB, Joachim SC (2015) S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J Mol Neurosci 56(1):228–236

    CAS  PubMed  Google Scholar 

  21. Reinehr S, Reinhard J, Gandej M, Gottschalk I, Stute G, Faissner A, Dick HB, Joachim SC (2018) S100B immunization triggers NFkappaB and complement activation in an autoimmune glaucoma model. Sci Rep 8(1):9821

    PubMed  PubMed Central  Google Scholar 

  22. Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6(13):1219–1225

    CAS  PubMed  Google Scholar 

  23. Ponath G, Schettler C, Kaestner F, Voigt B, Wentker D, Arolt V et al (2007) Autocrine S100B effects on astrocytes are mediated via RAGE. J Neuroimmunol 184(1–2):214–222

    CAS  PubMed  Google Scholar 

  24. Ray R, Juranek JK, Rai V (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 62:48–55

    CAS  PubMed  Google Scholar 

  25. Peng L, Parpura V, Verkhratsky A (2014) EDITORIAL neuroglia as a central element of neurological diseases: an underappreciated target for therapeutic intervention. Curr Neuropharmacol 12(4):303–307

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia. 36(2):180–190

    CAS  PubMed  Google Scholar 

  27. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145

    CAS  PubMed  Google Scholar 

  28. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820

    CAS  PubMed  Google Scholar 

  29. Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC (2000) Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41(2):431–442

    CAS  PubMed  Google Scholar 

  30. de Hoz R, Rojas B, Ramirez AI, Salazar JJ, Gallego BI, Trivino A et al (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721

    PubMed  PubMed Central  Google Scholar 

  31. Dossi E, Vasile F, Rouach N (2018) Human astrocytes in the diseased brain. Brain Res Bull 136:139–156

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia. 63(1):118–131

    PubMed  Google Scholar 

  33. Aloisi F (2001) Immune function of microglia. Glia. 36(2):165–179

    CAS  PubMed  Google Scholar 

  34. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40(2):133–139

    PubMed  Google Scholar 

  35. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313

    CAS  PubMed  Google Scholar 

  36. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739

    Google Scholar 

  37. Kuehn S, Meissner W, Grotegut P, Theiss C, Dick HB, Joachim SC (2018) Intravitreal S100B injection leads to progressive glaucoma like damage in retina and optic nerve. Front Cell Neurosci 12:312

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuehn S, Rodust C, Stute G, Grotegut P, Meissner W, Reinehr S et al (2017) Concentration-dependent inner retina layer damage and optic nerve degeneration in a NMDA model. J Mol Neurosci 63(3–4):283–299

    CAS  PubMed  Google Scholar 

  39. Noristani R, Kuehn S, Stute G, Reinehr S, Stellbogen M, Dick HB, Joachim SC (2016) Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model. J Mol Neurosci 58(4):470–482

    CAS  PubMed  Google Scholar 

  40. Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N et al (2012) Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 7(7):e40616

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC (2013) Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflammation 10:120

    PubMed  PubMed Central  Google Scholar 

  42. Shindler KS, Guan Y, Ventura E, Bennett J, Rostami A (2006) Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis. Mult Scler 12(5):526–532

    PubMed  Google Scholar 

  43. Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677

    CAS  PubMed  Google Scholar 

  44. Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP et al (1994) NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 153(2):712–723

    CAS  PubMed  Google Scholar 

  45. Gerlach R, Demel G, Konig HG, Gross U, Prehn JH, Raabe A et al (2006) Active secretion of S100B from astrocytes during metabolic stress. Neuroscience. 141(4):1697–1701

    CAS  PubMed  Google Scholar 

  46. Ellis EF, Willoughby KA, Sparks SA, Chen T (2007) S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 101(6):1463–1470

    CAS  PubMed  Google Scholar 

  47. Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia. 51(2):81–97

    CAS  PubMed  Google Scholar 

  48. Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187

    CAS  PubMed  Google Scholar 

  49. Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J 24(4):1043–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang L, Zhang L, Liu Z, Zhao S, Xu D, Li L, Peng Q, Ai Y (2019) Pentamidine protects mice from cecal ligation and puncture-induced brain damage via inhibiting S100B/RAGE/NF-kappaB. Biochem Biophys Res Commun 517:221–226

    CAS  PubMed  Google Scholar 

  51. Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81(1):108–118

    CAS  PubMed  Google Scholar 

  52. Chen M, Glenn JV, Dasari S, McVicar C, Ward M, Colhoun L, Quinn M, Bierhaus A et al (2014) RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLoS One 9(2):e89548

    PubMed  PubMed Central  Google Scholar 

  53. Jenkins HG, Ikeda H (1992) Tumour necrosis factor causes an increase in axonal transport of protein and demyelination in the mouse optic nerve. J Neurol Sci 108(1):99–104

    CAS  PubMed  Google Scholar 

  54. Costa DVS, Bon-Frauches AC, Silva A, Lima-Junior RCP, Martins CS, Leitao RFC et al (2019) 5-Fluorouracil induces enteric neuron death and glial activation during intestinal mucositis via a S100B-RAGE-NFkappaB-dependent pathway. Sci Rep 9(1):665

    PubMed  PubMed Central  Google Scholar 

  55. Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25(4):431–439

    CAS  PubMed  Google Scholar 

  56. Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA et al (2016) RAGE expression and ROS generation in neurons: differentiation versus damage. Oxidative Med Cell Longev 2016:9348651

    CAS  Google Scholar 

  57. Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42(1–3):3–18

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    CAS  PubMed  Google Scholar 

  59. Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R (2001) S100B expression in and effects on microglia. Glia. 33(2):131–142

    CAS  PubMed  Google Scholar 

  60. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    CAS  Google Scholar 

  61. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    CAS  Google Scholar 

  62. Zhou S, Zhu W, Zhang Y, Pan S, Bao J (2018) S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm Res 67(11–12):937–949

    CAS  PubMed  Google Scholar 

  63. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Sci Signal 3(105):cm1

    PubMed  Google Scholar 

  64. Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18(9):947–956

    CAS  PubMed  Google Scholar 

  65. Fan Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 140(3):792–803

    PubMed  PubMed Central  Google Scholar 

  66. H EH, Noristani HN, Perrin FE (2017) Microglia responses in acute and chronic neurological diseases: what microglia-specific transcriptomic studies taught (and did not teach) us. Front Aging Neurosci 9:227

    Google Scholar 

  67. Li DR, Zhang F, Wang Y, Tan XH, Qiao DF, Wang HJ, Michiue T, Maeda H (2012) Quantitative analysis of GFAP- and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Legal Med 14(2):84–92

    CAS  PubMed  Google Scholar 

  68. Kondo H, Iwanaga T, Nakajima T (1983) An immunocytochemical study on the localization of S-100 protein in the retina of rats. Cell Tissue Res 231(3):527–532

    CAS  PubMed  Google Scholar 

  69. Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313(3):239–245

    PubMed  Google Scholar 

  70. Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem 284(13):8797–8811

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Reali C, Pillai R, Saba F, Cabras S, Michetti F, Sogos V (2012) S100B modulates growth factors and costimulatory molecules expression in cultured human astrocytes. J Neuroimmunol 243(1–2):95–99

    CAS  PubMed  Google Scholar 

Download references

Funding

This project was funded in part by the Ernst und Berta Grimmke Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. Joachim.

Ethics declarations

This study was carried out in accordance with the recommendations of ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. The protocol was approved by the animal care committee of North Rhine-Westphalia in Germany (84-02.04.2013.A442).

Conflict Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grotegut, P., Kuehn, S., Meißner, W. et al. Intravitreal S100B Injection Triggers a Time-Dependent Microglia Response in a Pro-Inflammatory Manner in Retina and Optic Nerve. Mol Neurobiol 57, 1186–1202 (2020). https://doi.org/10.1007/s12035-019-01786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01786-4

Keywords

Navigation