Skip to main content

Advertisement

Log in

The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function

  • Original Paper
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The brain’s primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13(6):767–775. https://doi.org/10.1038/nn.2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  CAS  PubMed  Google Scholar 

  3. Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18(13):3227–3241. https://doi.org/10.1016/j.celrep.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI et al (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306(5705):2255–2257. https://doi.org/10.1126/science.1104935

    Article  CAS  PubMed  Google Scholar 

  5. Pasquier L, Dubourg C, Blayau M, Lazaro L, Le Marec B, David V, Odent S (2000) A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur J Hum Genet 8(10):797–800. https://doi.org/10.1038/sj.ejhg.5200540

    Article  CAS  PubMed  Google Scholar 

  6. Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S et al (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype-phenotype correlations. Hum Mutat 24(1):43–51. https://doi.org/10.1002/humu.20056

    Article  CAS  PubMed  Google Scholar 

  7. Pasquier L, Dubourg C, Gonzales M, Lazaro L, David V, Odent S, Encha-Razavi F (2005) First occurrence of aprosencephaly/atelencephaly and holoprosencephaly in a family with a SIX3 gene mutation and phenotype/genotype correlation in our series of SIX3 mutations. J Med Genet 42(1):e4. https://doi.org/10.1136/jmg.2004.023416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larder R, Kimura I, Meadows J, Clark DD, Mayo S, Mellon PL (2013) Gene dosage of Otx2 is important for fertility in male mice. Mol Cell Endocrinol 377(1–2):16–22. https://doi.org/10.1016/j.mce.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffmann HM, Tamrazian A, Xie H, Perez-Millan MI, Kauffman AS, Mellon PL (2014) Heterozygous deletion of ventral anterior homeobox (vax1) causes subfertility in mice. Endocrinology 155(10):4043–4053. https://doi.org/10.1210/en.2014-1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pandolfi EC, Hoffmann HM, Schoeller EL, Gorman MR, Mellon PL (2018) Haploinsufficiency of SIX3 abolishes male reproductive behavior through disrupted olfactory development, and impairs female fertility through disrupted GnRH neuron migration. Mol Neurobiol 55(11):8709–8727. https://doi.org/10.1007/s12035-018-1013-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geng X, Acosta S, Lagutin O, Gil H, Oliver G (2016) Six3 dosage mediates the pathogenesis of holoprosencephaly. Development 143(23):4462–4473. https://doi.org/10.1242/dev.132142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann H, Pandolfi E, Larder R, Mellon P (2018) Haploinsufficiency of homeodomain proteins Six3, Vax1, and Otx2, causes subfertility in mice via distinct mechanisms. Neuroendocrinology 109:200–207. https://doi.org/10.1159/000494086

    Article  CAS  PubMed  Google Scholar 

  13. Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, Brinkmeier ML, Raetzman LT et al (2010) Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol Cell Endocrinol 323(1):4–19

    Article  CAS  PubMed  Google Scholar 

  14. Nesan D, Kurrasch DM (2016) Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 438:3–17. https://doi.org/10.1016/j.mce.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  15. Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 101(16):6231–6236. https://doi.org/10.1073/pnas.0401149101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J et al (2018) Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362(6416):eaau5324. https://doi.org/10.1126/science.aau5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J et al (2014) Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 7(3):609–622. https://doi.org/10.1016/j.celrep.2014.03.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180(5):631–644. https://doi.org/10.1007/s00360-010-0451-4

    Article  PubMed  Google Scholar 

  19. Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17 Suppl 1:76–83. https://doi.org/10.1111/dom.12516

    Article  CAS  PubMed  Google Scholar 

  20. Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S et al (2008) The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J Biol Rhythm 23(1):26–36. https://doi.org/10.1177/0748730407311254

    Article  CAS  Google Scholar 

  21. Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132–E1141. https://doi.org/10.1073/pnas.1217154110

    Article  PubMed  PubMed Central  Google Scholar 

  22. VanDunk C, Hunter LA, Gray PA (2011) Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31(17):6457–6467. https://doi.org/10.1523/JNEUROSCI.5385-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahoney MM (2010) Shift work, jet lag, and female reproduction. Int J Endocrinol 2010:813764. https://doi.org/10.1155/2010/813764

    Article  PubMed  PubMed Central  Google Scholar 

  24. Loh DH, Kuljis DA, Azuma L, Wu Y, Truong D, Wang HB, Colwell CS (2014) Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide. J Biol Rhythm 29(5):355–369. https://doi.org/10.1177/0748730414549767

    Article  CAS  Google Scholar 

  25. Hickok JR, Tischkau SA (2010) In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology 91(1):110–120. https://doi.org/10.1159/000243163

    Article  CAS  PubMed  Google Scholar 

  26. Mosko SS, Moore RY (1979) Neonatal ablation of the suprachiasmatic nucleus. Effects on the development of the pituitary-gonadal axis in the female rat. Neuroendocrinology 29(5):350–361

    Article  CAS  PubMed  Google Scholar 

  27. Christian CA, Moenter SM (2008) Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology 149(6):3130–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams WP 3rd, Kriegsfeld LJ (2012) Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol 3:60. https://doi.org/10.3389/fendo.2012.00060

    Article  Google Scholar 

  29. Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW, Liposits Z, Kallo I (2010) Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22(9):1032–1039. https://doi.org/10.1111/j.1365-2826.2010.02045.x

    Article  CAS  PubMed  Google Scholar 

  30. Russo KA, La JL, Stephens SB, Poling MC, Padgaonkar NA, Jennings KJ, Piekarski DJ, Kauffman AS et al (2015) Circadian control of the female reproductive axis through gated responsiveness of the RFRP-3 system to VIP signaling. Endocrinology 156(7):2608–2618. https://doi.org/10.1210/en.2014-1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smarr BL, Gile JJ, de la Iglesia HO (2013) Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in female rats: possible role as an integrator for circadian and ovarian signals timing the luteinising hormone surge. J Neuroendocrinol 25(12):1273–1279. https://doi.org/10.1111/jne.12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ (2011) Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152(2):595–606. https://doi.org/10.1210/en.2010-0943

    Article  CAS  PubMed  Google Scholar 

  33. Schafer D, Kane G, Colledge WH, Piet R, Herbison AE (2018) Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol 30(12):e12660. https://doi.org/10.1111/jne.12660

    Article  CAS  PubMed  Google Scholar 

  34. Piet R, Dunckley H, Lee K, Herbison AE (2016) Vasoactive intestinal peptide excites GnRH neurons in male and female mice. Endocrinology 157(9):3621–3630. https://doi.org/10.1210/en.2016-1399

    Article  CAS  PubMed  Google Scholar 

  35. Piet R, Fraissenon A, Boehm U, Herbison AE (2015) Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J Neurosci 35(17):6881–6892. https://doi.org/10.1523/JNEUROSCI.4587-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoffmann HM, Mellon PL (2018) Regulation of GnRH gene expression. In: Herbison AE, Plant TM (eds) The GnRH neuron and its control. Wiley Blackwell, Hoboken, pp. 95–120

    Google Scholar 

  37. Bedont JL, Newman EA, Blackshaw S (2015) Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol 4(5):445–468. https://doi.org/10.1002/wdev.187

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J Neurosci 23(35):11202–11213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forni PE, Wray S (2015) GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 36:165–177. https://doi.org/10.1016/j.yfrne.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Hallonet M, Hollemann T, Pieler T, Gruss P (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 13(23):3106–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bertuzzi S, Hindges R, Mui SH, O'Leary DD, Lemke G (1999) The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev 13(23):3092–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  CAS  PubMed  Google Scholar 

  43. Larder R, Clark DD, Miller NL, Mellon PL (2011) Hypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6. J Neurosci 31(2):426–438. https://doi.org/10.1523/JNEUROSCI.1688-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark DD, Gorman MR, Hatori M, Meadows JD, Panda S, Mellon PL (2013) Aberrant development of the suprachiasmatic nucleus and circadian rhythms in mice lacking the homeodomain protein six6. J Biol Rhythm 28(1):15–25. https://doi.org/10.1177/0748730412468084

    Article  CAS  Google Scholar 

  45. Pandolfi EC, Tonsfeldt KJ, Hoffmann HM, Mellon PL (2019) Deletion of the homeodomain protein Six6 from GnRH neurons decreases GnRH gene expression resulting in infertility. Endocrinology 160:2151–2164. https://doi.org/10.1210/en.2019-00113

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hoffmann HM, Trang C, Gong P, Kimura I, Pandolfi EC, Mellon PL (2016) Deletion of Vax1 from GnRH neurons abolishes GnRH expression and leads to hypogonadism and infertility. J Neurosci 36(12):3506–3518. https://doi.org/10.1523/JNEUROSCI.2723-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bharti K, Gasper M, Bertuzzi S, Arnheiter H (2011) Lack of the ventral anterior homeodomain transcription factor VAX1 leads to induction of a second pituitary. Development 138(5):873–878. https://doi.org/10.1242/dev.056465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123(4):669–682

    Article  CAS  PubMed  Google Scholar 

  49. Wolfe A, Divall S, Singh SP, Nikrodhanond AA, Baria AT, Le WW, Hoffman GE, Radovick S (2008) Temporal and spatial regulation of CRE recombinase expression in gonadotrophin-releasing hormone neurones in the mouse. J Neuroendocrinol 20(7):909–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ridder WH 3rd, Nusinowitz S (2006) The visual evoked potential in the mouse--origins and response characteristics. Vis Res 46(6–7):902–913. https://doi.org/10.1016/j.visres.2005.09.006

    Article  PubMed  Google Scholar 

  51. Hoffmann HM, Gong P, Tamrazian A, Mellon PL (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143–154. https://doi.org/10.1016/j.mce.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  52. Hatori M, Gill S, Mure LS, Goulding M, O'Leary DD, Panda S (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. eLife 3:e03357. https://doi.org/10.7554/eLife.03357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Givens ML, Rave-Harel N, Goonewardena VD, Kurotani R, Berdy SE, Swan CH, Rubenstein JL, Robert B et al (2005) Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families. J Biol Chem 280(19):19156–19165

    Article  CAS  PubMed  Google Scholar 

  54. Hoffmann HM (2018) Determination of reproductive competence by confirming pubertal onset and performing a fertility assay in mice and rats. J Vis Exp (140):e58352. doi:https://doi.org/10.3791/58352

  55. Hoffmann HM, Larder R, Lee JS, Hu RJ, Trang C, Devries BM, Clark DD, Mellon PL (2019) Differential CRE expression in Lhrh-Cre and Gnrh-Cre alleles and the impact on fertility in Otx2-flox mice. Neuroendocrinology 108:328–342. https://doi.org/10.1159/000497791

    Article  CAS  PubMed  Google Scholar 

  56. Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135(6):1169–1178. https://doi.org/10.1242/dev.014142

    Article  CAS  PubMed  Google Scholar 

  57. Bedont JL, Blackshaw S (2015) Constructing the suprachiasmatic nucleus: a watchmaker’s perspective on the central clockworks. Front Syst Neurosci 9:74. https://doi.org/10.3389/fnsys.2015.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plageman TF Jr, Lang RA (2012) Generation of an Rx-tTA: TetOp-Cre knock-in mouse line for doxycycline regulated Cre activity in the Rx expression domain. PLoS One 7(11):e50426. https://doi.org/10.1371/journal.pone.0050426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blattner MS, Mahoney MM (2014) Estrogen receptor 1 modulates circadian rhythms in adult female mice. Chronobiol Int 31(5):637–644. https://doi.org/10.3109/07420528.2014.885528

    Article  CAS  PubMed  Google Scholar 

  60. Bailey M, Silver R (2014) Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 35(1):111–139. https://doi.org/10.1016/j.yfrne.2013.11.003

    Article  PubMed  Google Scholar 

  61. Edgar DM, Kilduff TS, Martin CE, Dement WC (1991) Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice. Physiol Behav 50(2):373–378

    Article  CAS  PubMed  Google Scholar 

  62. Tonsfeldt KJ, Schoeller EL, Brusman LE, Cui LJ, Lee J, Mellon PL (2019) The contribution of the circadian gene Bmal1 to female fertility and the generation of the preovulatory luteinizing hormone surge. J Endocr Soc 3(4):716–733. https://doi.org/10.1210/js.2018-00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246. https://doi.org/10.1146/annurev-neuro-071714-034120

    Article  CAS  PubMed  Google Scholar 

  64. Herzog ED, Schwartz WJ (2002) A neural clockwork for encoding circadian time. J Appl Physiol 92(1):401–408. https://doi.org/10.1152/japplphysiol.00836.2001

    Article  CAS  PubMed  Google Scholar 

  65. Crossland WJ, Uchwat CJ (1982) Neurogenesis in the chick ventral lateral geniculate and ectomammillary nuclei: relationship of soma size to birthdate. Brain Res 282(1):33–46

    Article  CAS  PubMed  Google Scholar 

  66. Kabrita CS, Davis FC (2008) Development of the mouse suprachiasmatic nucleus: determination of time of cell origin and spatial arrangements within the nucleus. Brain Res 1195:20–27. https://doi.org/10.1016/j.brainres.2007.12.020

    Article  CAS  PubMed  Google Scholar 

  67. Compston A (1991) Limiting and repairing the damage in multiple sclerosis. J Neurol Neurosurg Psychiatry 54(11):945–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van der Beek EM, Horvath TL, Wiegant VM, van den Hurk R, Buijs RM (1997) Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384(4):569–579

    Article  PubMed  Google Scholar 

  69. Horvath TL, Cela V, van der Beek EM (1998) Gender-specific apposition between vasoactive intestinal peptide-containing axons and gonadotrophin-releasing hormone-producing neurons in the rat. Brain Res 795(1–2):277–281

    Article  CAS  PubMed  Google Scholar 

  70. Kriegsfeld LJ, Silver R, Gore AC, Crews D (2002) Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol 14(9):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ward DR, Dear FM, Ward IA, Anderson SI, Spergel DJ, Smith PA, Ebling FJ (2009) Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse. PLoS One 4(4):e5322. https://doi.org/10.1371/journal.pone.0005322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smarr BL, Morris E, de la Iglesia HO (2012) The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge. Endocrinology 153(6):2839–2850. https://doi.org/10.1210/en.2011-1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith MJ, Jiennes L, Wise PM (2000) Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology 141(11):4317–4320. https://doi.org/10.1210/endo.141.11.7876

    Article  CAS  PubMed  Google Scholar 

  74. Dolatshad H, Campbell EA, O'Hara L, Maywood ES, Hastings MH, Johnson MH (2006) Developmental and reproductive performance in circadian mutant mice. Hum Reprod 21(1):68–79. https://doi.org/10.1093/humrep/dei313

    Article  CAS  PubMed  Google Scholar 

  75. Legan SJ, Karsch FJ (1975) A daily signal for the LH surge in the rat. Endocrinology 96(1):57–62

    Article  CAS  PubMed  Google Scholar 

  76. Christian CA, Moenter SM (2010) The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 31(4):544–577. https://doi.org/10.1210/er.2009-0023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Conte I, Marco-Ferreres R, Beccari L, Cisneros E, Ruiz JM, Tabanera N, Bovolenta P (2010) Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6. Development 137(14):2307–2317. https://doi.org/10.1242/dev.045294

    Article  CAS  PubMed  Google Scholar 

  78. Tetreault N, Champagne MP, Bernier G (2009) The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev Biol 327(2):541–550. https://doi.org/10.1016/j.ydbio.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  79. Diaczok D, DiVall S, Matsuo I, Wondisford FE, Wolfe AM, Radovick S (2011) Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism. Mol Endocrinol 25(5):833–846. https://doi.org/10.1210/me.2010-0271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurian JR, Louis S, Keen KL, Wolfe A, Terasawa E, Levine JE (2016) The methylcytosine dioxygenase ten-eleven translocase-2 (tet2) enables elevated GnRH gene expression and maintenance of male reproductive function. Endocrinology 157(9):3588–3603. https://doi.org/10.1210/en.2016-1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. DiVall SA, Herrera D, Sklar B, Wu S, Wondisford F, Radovick S, Wolfe A (2015) Insulin receptor signaling in the GnRH neuron plays a role in the abnormal GnRH pulsatility of obese female mice. PLoS One 10(3):e0119995. https://doi.org/10.1371/journal.pone.0119995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Novaira HJ, Sonko ML, Hoffman G, Koo Y, Ko C, Wolfe A, Radovick S (2014) Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism. Mol Endocrinol 28(2):225–238. https://doi.org/10.1210/me.2013-1319

    Article  CAS  PubMed  Google Scholar 

  83. Wu S, Divall S, Hoffman GE, Le WW, Wagner KU, Wolfe A (2011) Jak2 is necessary for neuroendocrine control of female reproduction. J Neurosci 31(1):184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Divall SA, Williams TR, Carver SE, Koch L, Bruning JC, Kahn CR, Wondisford F, Radovick S et al (2010) Divergent roles of growth factors in the GnRH regulation of puberty in mice. J Clin Invest 120(8):2900–2909. https://doi.org/10.1172/JCI41069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Catherine Dulac (Harvard University, Cambridge, MA, USA) for the Lhrh-cre mice and Dr. Andrew Wolfe (Johns Hopkins University) for the Gnrh-cre mice. The Vip-luciferase plasmid was kindly provided by Dr. Satchidananda Panda (Salk Institute, La Jolla, CA, USA).

Funding

This work was supported by National Institutes of Health (NIH) Grants R01 HD072754 and R01 HD082567 (to P.L.M.). It was also supported by NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) P50 HD012303 as part of the National Centers for Translational Research in Reproduction and Infertility (P.L.M.). P.L.M. was also partially supported by P30 DK063491, P30 CA023100, and P42 ES010337. H.M.H. was partially supported by K99/R00 HD084759 and the United States Department of Agriculture National Institute of Food and Agriculture Hatch project 1018024. E.C.P. was partially supported by NIH R25 GM083275 and F31 HD098652. T.T. was partially supported by the Endocrine Society and R.H. was partially supported by the Howell Foundation and the Frontiers of Innovation Scholars Program, UC San Diego. J.A.B. was partially supported by the Frontiers of Innovation Scholars Program, UC San Diego. Work in the M.R.G. laboratory was supported by Office of Naval Research #N00014-13-1-0285, and work in the D.S.K. laboratory is supported by NIH/National Eye Institute award R01EY027011, RPB Special Scholar Award, Atkinson laboratory funds as well as by RPB Unrestricted Grant to Shiley Eye Institute and by the UCSD VisionResearch Center Core Grant P30EY022589. K.B. was supported by NIH/National Institute of Neurological Disorders and Stroke IRP funds. The University of Virginia, Center for Research in Reproduction, Ligand Assay and Analysis Core, is supported by the NIH/NICHD Grant P50 HD028934. We thank Karen J. Tonsfeldt, Erica L. Schoeller, Alexandra Yaw, Sabrina Baretto, Ichiko Saotome, and Jason D. Meadows for assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne M. Hoffmann.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandolfi, E.C., Breuer, J.A., Nguyen Huu, V.A. et al. The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function. Mol Neurobiol 57, 1217–1232 (2020). https://doi.org/10.1007/s12035-019-01781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01781-9

Keywords

Navigation