Advertisement

AAV-Mediated Expression of Dominant-Negative ULK1 Increases Neuronal Survival and Enhances Motor Performance in the MPTP Mouse Model of Parkinson’s Disease

  • Dirk Balke
  • Lars Tatenhorst
  • Vivian Dambeck
  • Vinicius Toledo Ribas
  • Björn F. Vahsen
  • Uwe Michel
  • Mathias Bähr
  • Paul LingorEmail author
Article

Abstract

Loss of nigrostriatal projections by axonal degeneration is a key early event in Parkinson’s disease (PD) pathophysiology, being accountable for the lack of dopamine in the nigrostriatal system and resulting in motor symptoms such as bradykinesia, rigidity, and tremor. Since autophagy is an important mechanism contributing to axonal degeneration, we aimed to evaluate the effects of competitive autophagy inhibition in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Adeno-associated viral vector (AAV)–mediated overexpression of a dominant-negative form of the unc-51 like autophagy-initiating kinase (ULK1.DN) in the substantia nigra was induced 3 weeks before MPTP treatment. Analysis of motor behavior demonstrated a significant improvement of ULK1.DN expressing mice after MPTP treatment. Immunohistochemical analyses of dopaminergic nigral neurons and nigrostriatal projections revealed a significant protection from MPTP-induced neurotoxicity after ULK1.DN expression. Western blot analysis linked these findings to an activation of mTOR signaling. Taken together, our results indicate that expression of ULK1.DN can attenuate MPTP-induced axonal neurodegeneration, suggesting that ULK1 could be a promising novel target in the treatment of PD.

Keywords

ULK1 Autophagy Axonal degeneration MPTP mouse model Parkinson’s disease 

Abbreviations

AAD

Acute axonal degeneration

AAV

Adeno-associated virus

AMPK

AMP-activated protein kinase

AP

Anterior posterior

ATG

Autophagy related

DA

Dopamine

DOPAC

Dihydroxyphenylacetic acid

DV

Dorsoventral

FIP200

FAK family interacting protein of 200 kDa

HPLC

High-performance liquid chromatography

HVA

Homovanillic acid

LC3

Microtubule-associated proteins 1A/1B light chain 3B

MPP +

1-Methyl-4-phenylpyridinium.

ML

Mediolateral

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mTOR

Mechanistic target of rapamycin kinase

p62

Sequestosome 1/p62

PD

Parkinson’s disease

SN

Substantia nigra

SNpc

Substantia nigra pars compacta

TH

Tyrosine hydroxylase

ULK1

Unc-51 like autophagy activating kinase

ULK1.DN

Dominant-negative ULK1.

Notes

Acknowledgments

The authors thank Elisabeth Barski, Sabine Ceramella, and Barbara Müller for excellent technical support. We thank Sharon A. Tooze (Francis Crick Institute, London, UK) for providing the ULK1.DN plasmid.

Funding Information

D.B. and B.F.V. were supported by a scholarship from the Department of Neurology, University Medical Center Göttingen. V.T.R. was a fellow of the National Council for Scientific and Technological Development (CNPq), Brazil. L.T., V.D., M.B. and P.L. received funding from the Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen.

Compliance with Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in this study involving animals were in accordance with the ethical standards and followed the regulations of the animal research council at the University Medical Center Göttingen and legislation of the State of Lower Saxony, Germany (33.9-42502-04-16/2239).

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1744_Fig7_ESM.png (1.4 mb)
Fig. S1

Injection of AAV.ULK1.DN into the substantia nigra pars compacta (SNpc). Adeno-associated viral vectors (AAV) were injected into the SNpc relative to Bregma at anterior posterior: −3.0 mm, mediolateral: −1.2 mm and dorsoventral: −4.5 mm (a). Representative overview of mCherry expression after AAV injection into the SNpc of the mouse brain. Cell nuclei were counterstained with DAPI to visualize brain structures. Scale bar: 1 mm (b). Representative photomicrograph of the mouse midbrain region visualizing the co-localization of mCherry expression and tyrosine hydroxylase (TH) expression in the SNpc after AAV injection. Cell nuclei were counterstained with DAPI. Scale bar: 500 μm (c). (PNG 1426 kb)

12035_2019_1744_MOESM1_ESM.tif (3.6 mb)
High resolution image (TIF 3687 kb)
12035_2019_1744_Fig8_ESM.png (1.1 mb)
Fig. S2

Immunohistochemical analysis of p62 in the substantia nigra pars compacta (SNpc). Representative photomicrographs of the SNpc in the treatment groups CTRL PBS, ULK1.DN PBS, CTRL MPTP and ULK1.DN MPTP show an increase of p62 protein after ULK1.DN expression. White arrowheads indicate p62 signal. Scale bar: 50 μm. (PNG 1120 kb)

12035_2019_1744_MOESM2_ESM.tif (5.3 mb)
High resolution image (TIF 5416 kb)
12035_2019_1744_Fig9_ESM.png (1.4 mb)
Fig. S3

Immunohistochemical analysis of mTOR in the substantia nigra pars compacta (SNpc). Representative photomicrographs of the SNpc in the treatment groups CTRL PBS, ULK1.DN PBS, CTRL MPTP and ULK1.DN MPTP show an increase of mTOR protein after ULK1.DN expression. Scale bar: 50 μm. (PNG 1471 kb)

12035_2019_1744_MOESM3_ESM.tif (6 mb)
High resolution image (TIF 6111 kb)
12035_2019_1744_MOESM4_ESM.docx (17 kb)
ESM 4 (DOCX 16 kb)
12035_2019_1744_MOESM5_ESM.docx (14 kb)
ESM 5 (DOCX 14 kb)
12035_2019_1744_MOESM6_ESM.docx (14 kb)
ESM 6 (DOCX 13 kb)

References

  1. 1.
    Salat D, Noyce AJ, Schrag A, Tolosa E (2016) Challenges of modifying disease progression in prediagnostic Parkinson’s disease. Lancet Neurol 15:637–648.  https://doi.org/10.1016/S1474-4422(16)00060-0 CrossRefGoogle Scholar
  2. 2.
    Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83.  https://doi.org/10.1016/j.expneurol.2012.01.011 CrossRefGoogle Scholar
  3. 3.
    Lingor P, Koch JC, Tönges L, Bähr M (2012) Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 349:289–311.  https://doi.org/10.1007/s00441-012-1362-3 CrossRefGoogle Scholar
  4. 4.
    Tagliaferro P, Burke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Park Dis 6:1–15.  https://doi.org/10.3233/JPD-150769 Google Scholar
  5. 5.
    Banerjee R, Beal MF, Thomas B (2010) Autophagy in neurodegenerative disorders: Pathogenic roles and therapeutic implications. Trends Neurosci 33:541–549.  https://doi.org/10.1016/j.tins.2010.09.001 CrossRefGoogle Scholar
  6. 6.
    Nah J, Yuan J, Jung Y-K (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cell 38:381–389.  https://doi.org/10.14348/molcells.2015.0034 CrossRefGoogle Scholar
  7. 7.
    Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811.  https://doi.org/10.1038/nn.2575 CrossRefGoogle Scholar
  8. 8.
    Koch JC, Knöferle J, Tönges L, Ostendorf T, Bähr M, Lingor P (2010) Acute axonal degeneration in vivo is attenuated by inhibition of autophagy in a calcium-dependent manner. Autophagy 6:658–659.  https://doi.org/10.4161/auto.6.5.12188 CrossRefGoogle Scholar
  9. 9.
    Knöferle J, Koch JC, Ostendorf T et al (2010) Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A 107:6064–6069.  https://doi.org/10.1073/pnas.0909794107 CrossRefGoogle Scholar
  10. 10.
    Ribas VT, Schnepf B, Challagundla M, Koch JC, Bähr M, Lingor P (2015) Early and sustained activation of autophagy in degenerating axons after spinal cord injury. Brain Pathol 25:157–170.  https://doi.org/10.1111/bpa.12170 CrossRefGoogle Scholar
  11. 11.
    Cheng H-C, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, Wang C, During M et al (2011) Akt suppresses retrograde degeneration of dopaminergic axons by inhibition of macroautophagy. J Neurosci 31:2125–2135.  https://doi.org/10.1523/JNEUROSCI.5519-10.2011 CrossRefGoogle Scholar
  12. 12.
    Dagda RK, Das BT, Janda E (2013) How parkinsonian toxins dysregulate the autophagy machinery. Int J Mol Sci 14:22163–22189.  https://doi.org/10.3390/ijms141122163 CrossRefGoogle Scholar
  13. 13.
    Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: Role of oxidative stress. Mol Neurobiol 46:639–661.  https://doi.org/10.1007/s12035-012-8318-1 CrossRefGoogle Scholar
  14. 14.
    Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T et al (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30:1639–1647.  https://doi.org/10.1002/mds.26141 CrossRefGoogle Scholar
  15. 15.
    Zhang L, Dong Y, Xu X, Xu Z (2012) The role of autophagy in Parkinson’s disease. Neural Regen Res 7:141–145.  https://doi.org/10.3969/j.issn.1673-5374.2012.02.011 Google Scholar
  16. 16.
    Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472.  https://doi.org/10.1038/nrm4024 CrossRefGoogle Scholar
  17. 17.
    Chan EYW, Longatti A, McKnight NC, Tooze SA (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 29:157–171.  https://doi.org/10.1128/MCB.01082-08 CrossRefGoogle Scholar
  18. 18.
    Vahsen BF, Ribas VT, Lenz C, Roser AE, Michel U, Urlaub H et al (2018) Role of autophagic protein ULK1 in axonal degeneration and regeneration in cortical neurons in vitro. In: 11th FENS Forum of Neuroscience, 7–11 July 2018, Berlin, Germany p Poster C118. https://ep70.eventpilot.us/web/page.php?page=IntHtml&project=FENS18&id=abstract_34677
  19. 19.
    Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985.  https://doi.org/10.1038/sj.gt.3300938 CrossRefGoogle Scholar
  20. 20.
    Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I et al (2008) Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci 105:7827–7832.  https://doi.org/10.1073/pnas.0802866105 CrossRefGoogle Scholar
  21. 21.
    Tatenhorst L, Tönges L, Saal K-A, Koch JC, Szegő ÉM, Bähr M, Lingor P (2014) Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease. J Neuropathol Exp Neurol 73:770–779.  https://doi.org/10.1097/NEN.0000000000000095 CrossRefGoogle Scholar
  22. 22.
    Saal K-A, Koch JC, Tatenhorst L, Szegő ÉM, Ribas VT, Michel U, Bähr M, Tönges L et al (2015) AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson’s disease in vitro and in vivo. Neurobiol Dis 73:150–162.  https://doi.org/10.1016/j.nbd.2014.09.013 CrossRefGoogle Scholar
  23. 23.
    Tönges L, Frank T, Tatenhorst L et al (2012) Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain 135:3355–3370.  https://doi.org/10.1093/brain/aws254 CrossRefGoogle Scholar
  24. 24.
    Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefGoogle Scholar
  25. 25.
    Tatenhorst L, Eckermann K, Dambeck V, Fonseca-Ornelas L, Walle H, Lopes da Fonseca T, Koch JC, Becker S et al (2016) Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol Commun 4:39.  https://doi.org/10.1186/s40478-016-0310-y CrossRefGoogle Scholar
  26. 26.
    Bhimani AD, Kheirkhah P, Arnone GD, Nahhas CR, Kumar P, Wonais M, Hidrogo H, Aguilar E et al (2017) Functional gait analysis in a spinal contusion rat model. Neurosci Biobehav Rev 83:540–546.  https://doi.org/10.1016/j.neubiorev.2017.09.007 CrossRefGoogle Scholar
  27. 27.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy ( 3rd edition ). Autophagy 12:1–222.  https://doi.org/10.1080/15548627.2015.1100356 CrossRefGoogle Scholar
  28. 28.
    Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141.  https://doi.org/10.1038/ncb2152 CrossRefGoogle Scholar
  29. 29.
    Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357.  https://doi.org/10.1038/nrn3961 CrossRefGoogle Scholar
  30. 30.
    Zhu J-H, Guo F, Shelburne J et al (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481CrossRefGoogle Scholar
  31. 31.
    Beilina A, Cookson MR (2016) Genes associated with Parkinson’s disease: Regulation of autophagy and beyond. J Neurochem 139:91–107.  https://doi.org/10.1111/jnc.13266 CrossRefGoogle Scholar
  32. 32.
    Kurowska Z, Kordower JH, Stoessl AJ, Burke RE, Brundin P, Yue Z, Brady ST, Milbrandt J et al (2016) Is axonal degeneration a key early event in Parkinson’s disease? J Park Dis 6:703–707.  https://doi.org/10.3233/JPD-160881 Google Scholar
  33. 33.
    Ribas VT, Koch JC, Michel U, Bähr M, Lingor P (2016) Attenuation of axonal degeneration by Calcium Channel inhibitors improves retinal ganglion cell survival and regeneration after optic nerve crush. Mol Neurobiol 54:72–86.  https://doi.org/10.1007/s12035-015-9676-2 CrossRefGoogle Scholar
  34. 34.
    Zhang J-N, Michel U, Lenz C, Friedel CC, Köster S, d’Hedouville Z, Tönges L, Urlaub H et al (2016) Calpain-mediated cleavage of collapsin response mediator protein-2 drives acute axonal degeneration. Sci Rep 6:37050.  https://doi.org/10.1038/srep37050 CrossRefGoogle Scholar
  35. 35.
    Miki Y, Tanji K, Mori F, Utsumi J, Sasaki H, Kakita A, Takahashi H, Wakabayashi K (2016) Alteration of upstream autophagy-related proteins (ULK1, ULK2, Beclin1, VPS34 and AMBRA1) in Lewy body disease. Brain Pathol 26:359–370.  https://doi.org/10.1111/bpa.12297 CrossRefGoogle Scholar
  36. 36.
    Miki Y, Shimoyama S, Kon T, Ueno T, Hayakari R, Tanji K, Matsumiya T, Tsushima E et al (2018) Alteration of autophagy-related proteins in peripheral blood mononuclear cells of patients with Parkinson’s disease. Neurobiol Aging 63:33–43.  https://doi.org/10.1016/j.neurobiolaging.2017.11.006 CrossRefGoogle Scholar
  37. 37.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909CrossRefGoogle Scholar
  38. 38.
    Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274CrossRefGoogle Scholar
  39. 39.
    Huang D, Xu J, Wang J, Tong J, Bai X, Li H, Wang Z, Huang Y et al (2017) Dynamic changes in the nigrostriatal pathway in the MPTP mouse model of Parkinson’s disease. Parkinsons Dis 2017:1–7.  https://doi.org/10.1155/2017/9349487 Google Scholar
  40. 40.
    Rommelfanger KS (2011) Extrastriatal dopaminergic circuits of the basal ganglia. Front Neuroanat 4:1–17.  https://doi.org/10.3389/fnana.2010.00139 Google Scholar
  41. 41.
    Pilotto A, di Cola FS, Premi E et al (2019) Extrastriatal dopaminergic and serotonergic pathways in Parkinson’s disease and in dementia with Lewy bodies: a 123I-FP-CIT SPECT study. Eur J Nucl Med Mol Imaging 46:1642–1651.  https://doi.org/10.1007/s00259-019-04324-5 CrossRefGoogle Scholar
  42. 42.
    Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474.  https://doi.org/10.1074/jbc.M703663200 CrossRefGoogle Scholar
  43. 43.
    Alers S, Loffler a. S, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11.  https://doi.org/10.1128/MCB.06159-11 CrossRefGoogle Scholar
  44. 44.
    Toda H, Mochizuki H, Flores R, Josowitz R, Krasieva TB, LaMorte VJ, Suzuki E, Gindhart JG et al (2008) UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev 22:3292–3307.  https://doi.org/10.1101/gad.1734608 CrossRefGoogle Scholar
  45. 45.
    Chu CT, Zhu J, Dagda R (2007) Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3:663–666CrossRefGoogle Scholar
  46. 46.
    Zhang H, Duan C, Yang H (2015) Defective autophagy in Parkinson’s disease: Lessons from genetics. Mol Neurobiol 51:89–104.  https://doi.org/10.1007/s12035-014-8787-5 CrossRefGoogle Scholar
  47. 47.
    Li Y, Zhang J, Yang C (2015) UNC-51-like kinase 1 blocks S6k1 phosphorylation contributes to neurodegeneration in Parkinson’s disease model in vitro. Biochem Biophys Res Commun 459:196–200.  https://doi.org/10.1016/j.bbrc.2015.02.008 CrossRefGoogle Scholar
  48. 48.
    Lee S-B, Kim H-T, Yang HO, Jang W (2018) Anodal transcranial direct current stimulation prevents methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by modulating autophagy in an in vivo mouse model of Parkinson’s disease. Sci Rep 8:15165.  https://doi.org/10.1038/s41598-018-33515-7 CrossRefGoogle Scholar
  49. 49.
    Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G (2018) Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 17:131–137.  https://doi.org/10.3892/mmr.2017.7897 Google Scholar
  50. 50.
    Jang Y chul, Hwang DJ, Koo JH, et al (2018) Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson’s disease. J Exerc Nutr Biochem 22:1–8.  https://doi.org/10.20463/jenb.2018.0001
  51. 51.
    Ouyang L, Zhang L, Zhang S, Yao D, Zhao Y, Wang G, Fu L, Lei P et al (2018) Small-molecule activator of UNC-51-like kinase 1 (ULK1) that induces cytoprotective autophagy for Parkinson’s disease treatment. J Med Chem 61:2776–2792.  https://doi.org/10.1021/acs.jmedchem.7b01575 CrossRefGoogle Scholar
  52. 52.
    Pupyshev AB, Tikhonova MA, Akopyan AA, Tenditnik MV, Dubrovina NI, Korolenko TA (2019) Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson’s disease. Pharmacol Biochem Behav 177:1–11.  https://doi.org/10.1016/j.pbb.2018.12.005 CrossRefGoogle Scholar
  53. 53.
    Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, Shi L, Zhang S et al (2017) SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol Rep 37:3449–3458.  https://doi.org/10.3892/or.2017.5635 CrossRefGoogle Scholar
  54. 54.
    Egan DF, Chun MGH, Vamos M, Zou H, Rong J, Miller CJ, Lou HJ, Raveendra-Panickar D et al (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 59:285–297.  https://doi.org/10.1016/j.molcel.2015.05.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)University Medical Center GöttingenGöttingenGermany
  3. 3.Center for Biostructural Imaging of Neurodegeneration (BIN)University Medical Center GöttingenGöttingenGermany
  4. 4.Department of MorphologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Department of Neurology, Klinikum rechts der IsarTechnical University of Munich, School of MedicineMunichGermany

Personalised recommendations