Skip to main content

Advertisement

Log in

Oxidative Stress in Autism Spectrum Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites’ surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barnard-Brak L, Richman DM, Chesnut SR, Little TD (2016) Social Communication Questionnaire scoring procedures for autism spectrum disorder and the prevalence of potential social communication disorder in ASD. Sch Psychol Q 31:522–533

    PubMed  Google Scholar 

  2. Sanchack KE, Thomas CA (2016) Autism spectrum disorder: primary care principles. Am Fam Physician 94:972–979

    PubMed  Google Scholar 

  3. Raymond LJ, Deth RC, Ralston NV (2014) Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res Treat 2014:164938. https://doi.org/10.1155/2014/164938

    Article  PubMed  PubMed Central  Google Scholar 

  4. Endreffy I, Bjørklund G, Dicső F, Urbina MA, Endreffy E (2016) Acid glycosaminoglycan (aGAG) excretion is increased in children with autism spectrum disorder, and it can be controlled by diet. Metab Brain Dis 31:273–278

    CAS  PubMed  Google Scholar 

  5. Symes W, Humphrey N (2010) Peer-group indicators of social inclusion among pupils with autistic spectrum disorders (ASD) in mainstream secondary schools: a comparative study. Sch Psychol Int 31:478–494

    Google Scholar 

  6. Saad K, Abdel-rahman AA, Elserogy YM, Al-Atram AA, Cannell JJ, Bjørklund G, Abdel-Reheim MK, Othman HA et al (2016) Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci 19:346–351

  7. Al-Ayadhi LY, Elamin NE (2013) Camel milk as a potential therapy as an antioxidant in autism spectrum disorder (ASD). Evid Based Complement Alternat Med 2013:602834. https://doi.org/10.1155/2013/602834

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, Pfaff DW (2017) Sex-specific gene–environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci U S A 114:1383–1388. https://doi.org/10.1073/pnas.1619312114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skaper SD, Facci L, Zusso M, Giusti P (2018) An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12:72. https://doi.org/10.3389/fncel.2018.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herbert MR (2011) SHANK3, the synapse, and autism. N Engl J Med 365:173–175

    CAS  PubMed  Google Scholar 

  11. Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Wars) 76:257–268

    Google Scholar 

  12. Roberts AL, Lyall K, Hart JE, Laden F, Just AC, Bobb JF, Koenen KC, Ascherio A et al (2013) Perinatal air pollutant exposures and autism spectrum disorder in the children of nurses’ health study II participants. Environ Health Perspect 121:978–984. https://doi.org/10.1289/ehp.1206187

  13. Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI et al (2013) Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309:570–577

  14. Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430

    PubMed  Google Scholar 

  15. Hepel M, Stobiecka M (2011) Interactions of herbicide atrazine with DNA. Nova Science Publishers, New York

    Google Scholar 

  16. Stobiecka M, Prance A, Coopersmith K, Hepel M (2011) Antioxidant effectiveness in preventing paraquat-mediated oxidative DNA damage in the presence of H2O2. Oxford University Press, Washington

    Google Scholar 

  17. Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG et al (2018) Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res 166:234–250

  18. Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Bjørklund G, Skalnaya MG, Tinkov AA (2017) Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder. Metab Brain Dis 32:1675–1684

    CAS  PubMed  Google Scholar 

  19. Cipolla CM, Lodhi IJ (2017) Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metab 28:297–308

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82

    CAS  PubMed  Google Scholar 

  21. Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373. https://doi.org/10.1016/j.bbadis.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117:209–220

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci 75:2539–2549

    CAS  PubMed  Google Scholar 

  24. Essa MM, Guillemin GJ, Waly MI, Al-Sharbati MM, Al-Farsi YM, Hakkim FL, Ali A, Al-Shafaee MS (2012) Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol Trace Elem Res 147:25–27

    CAS  PubMed  Google Scholar 

  25. Altun H, Şahin N, Kurutaş EB, Karaaslan U, Sevgen FH, Fındıklı E (2018) Assessment of malondialdehyde levels, superoxide dismutase, and catalase activity in children with autism spectrum disorders. Psychiatry Clin Psychopharmacol 28:408–415. https://doi.org/10.1080/24750573.2018.1470360

    Article  CAS  Google Scholar 

  26. González-Fraguela ME, Hung ML, Vera H, Maragoto C, Noris E, Blanco L, Galvizu R, Robinson M (2013) Oxidative stress markers in children with autism spectrum disorders. Br J Med Med Res 3:307–317. https://doi.org/10.9734/BJMMR/2013/2335

    Article  Google Scholar 

  27. Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, Meram I (2004) Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 254:143–147

    PubMed  Google Scholar 

  28. Ming X, Stein T, Brimacombe M, Johnson W, Lambert G, Wagner G (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73:379–384

    CAS  PubMed  Google Scholar 

  29. Evans TA, Siedlak SL, Lu L, Fu X, Wang Z, McGinnis WR, Fakhoury E, Castellani RJ et al (2008) The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biochem Biotechnol 4:61–72

  30. Sajdel-Sulkowska E, Lipinski B, Windom H, Audhya T, McGinnis W (2008) Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 4:73–84

    CAS  Google Scholar 

  31. Söğüt S, Zoroğlu SS, Özyurt H, Yılmaz HR, Özuğurlu F, Sivaslı E, Yetkin Ö, Yanık M et al (2003) Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 331:111–117

  32. Yorbik O, Sayal A, Akay C, Akbiyik D, Sohmen T (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67:341–343

    CAS  PubMed  Google Scholar 

  33. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42:1032–1040

    CAS  PubMed  Google Scholar 

  34. Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK (2011) Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurol 11:139. https://doi.org/10.1186/1471-2377-11-139

  35. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    CAS  PubMed  Google Scholar 

  36. Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, Geier MR (2009) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280:101–108

    CAS  PubMed  Google Scholar 

  37. Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR (2009) A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 34:386–393. https://doi.org/10.1007/s11064-008-9782-x

    Article  CAS  PubMed  Google Scholar 

  38. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K et al (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141:947–956

  39. Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O et al (2012) Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord 42:367–377

  40. James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O, Hubanks A, Gaylor DW (2008) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89:425–430

    PubMed  PubMed Central  Google Scholar 

  41. Pintaudi M, Veneselli E, Voci A, Vignoli A, Castiglione D, Calevo MG, Grasselli E, Ragazzoni M et al (2016) Blood oxidative stress and metallothionein expression in Rett syndrome: probing for markers. World J Biol Psychiatry 17:198–209. https://doi.org/10.3109/15622975.2015.1077990

  42. Vergani L, Cristina L, Paola R, Luisa AM, Shyti G, Edvige V, Giuseppe M, Elena G et al (2011) Metals, metallothioneins and oxidative stress in blood of autistic children. Res Autism Spectr Disord 5:286–293

  43. Nadeem A, Ahmad SF, Attia SM, AL-Ayadhi LY, Al-Harbi NO, Bakheet SA (2019) Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 88:352–359

    CAS  Google Scholar 

  44. Eshraghi R, Deth RC, Mittal R, Aranke M, Kay S-IS, Moshiree B, Eshraghi A (2018) Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: implications for the rise in autism. Front Cell Neurosci 12:256. https://doi.org/10.3389/fncel.2018.00256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Zhao S, Liu X, Zheng Y, Li L, Meng S (2018) Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed Pharmacother 107:262–269

    CAS  PubMed  Google Scholar 

  46. Messina A, Monda V, Sessa F, Valenzano A, Salerno M, Bitetti I, Precenzano F, Marotta R et al (2018) Sympathetic, metabolic adaptations, and oxidative stress in autism spectrum disorders: how far from physiology? Front Physiol 9:261. https://doi.org/10.3389/fphys.2018.00261

  47. McDougle CJ, Carlezon WA Jr (2013) Neuroinflammation and autism: toward mechanisms and treatments. Neuropsychopharmacology 38:241–242. https://doi.org/10.1038/npp.2012.174

    Article  PubMed  Google Scholar 

  48. Rose S, Bennuri SC, Wynne R, Melnyk S, James SJ, Frye RE (2016) Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study. FASEB J 31:904–909

    PubMed  PubMed Central  Google Scholar 

  49. Yui K, Kawasaki Y, Yamada H, Ogawa S (2016) Oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders. CNS Neurol Disord Drug Targets 15:587–596

    CAS  PubMed  Google Scholar 

  50. Frye RE, James SJ (2014) Metabolic pathology of autism in relation to redox metabolism. Biomark Med 8:321–330

    CAS  PubMed  Google Scholar 

  51. Tschinkel PFS, Bjørklund G, Conón LZZ, Chirumbolo S, Nascimento VA (2018) Plasma concentrations of the trace elements copper, zinc and selenium in Brazilian children with autism spectrum disorder. Biomed Pharmacother 106:605–609

    Google Scholar 

  52. Macedoni-Lukšič M, Gosar D, Bjørklund G, Oražem J, Kodrič J, Lešnik-Musek P, Zupančič M, France-Štiglic A et al (2015) Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol Trace Elem Res 163:2–10

  53. Mostafa GA, Bjørklund G, Urbina MA, Al-Ayadhi LY (2016) The levels of blood mercury and inflammatory-related neuropeptides in the serum are correlated in children with autism spectrum disorder. Metab Brain Dis 31:593–599

    CAS  PubMed  Google Scholar 

  54. Liu X, Cao S, Zhang X (2015) Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. J Agric Food Chem 63:7885–7895

    CAS  PubMed  Google Scholar 

  55. Doenyas C (2018) Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience 374:271–286

    CAS  PubMed  Google Scholar 

  56. Frye RE, Rose S, Slattery J, MacFabe DF (2015) Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis 26:27458. https://doi.org/10.3402/mehd.v26.27458

    Article  CAS  PubMed  Google Scholar 

  57. Rose S, Bennuri SC, Murray KF, Buie T, Winter H, Frye RE (2017) Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: a blinded case-control study. PLoS One 12:e0186377. https://doi.org/10.1371/journal.pone.0186377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133:872–883

    PubMed  Google Scholar 

  59. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22. https://doi.org/10.1186/1471-230X-11-22

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chirumbolo S, Bjørklund G (2017) PERM hypothesis: the fundamental machinery able to elucidate the role of xenobiotics and hormesis in cell survival and homeostasis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18010165

  61. Costanzo M, Boschi F, Carton F, Conti G, Covi V, Tabaracci G, Sbarbati A, Malatesta M (2018) Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur J Histochem:62. https://doi.org/10.4081/ejh.2018.2969

  62. Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G et al (2018) Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 124:114–121. https://doi.org/10.1016/j.freeradbiomed.2018.05.093

  63. Moldogazieva N, Mokhosoev I, Feldman N, Lutsenko S (2018) ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 52:507–543. https://doi.org/10.1080/10715762.2018

    Article  CAS  PubMed  Google Scholar 

  64. Bjørklund G, Kern JK, Urbina MA, Saad K, ElHoufey AA, Geier DA, Chirumbolo S, Geier MR, Mehta JA, Aaseth J (2018) Cerebral hypoperfusion in autism spectrum disorder. Acta Neurobiol Exp 78:9. https://doi.org/10.21307/ane-2018-005

  65. Russo FB, Freitas BC, Pignatari GC, Fernandes IR, Sebat J, Muotri AR, Beltrão-Braga PCB (2018) Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 83:569–578

    PubMed  Google Scholar 

  66. Niki E (2016) Oxidative stress and antioxidants: distress or eustress? Arch Biochem Biophys 595:19–24

    CAS  PubMed  Google Scholar 

  67. Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U et al (2015) Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 63:423–440

  68. El-Ansary A, Bjørklund G, Khemakhem AM, Al-Ayadhi L, Chirumbolo S, Ben Bacha A (2018) Metabolism-associated markers and Childhood Autism Rating Scales (CARS) as a measure of autism severity. J Mol Neurosci 65:265–276. https://doi.org/10.1007/s12031-018-1091-5

    Article  CAS  PubMed  Google Scholar 

  69. Granot E, Kohen R (2004) Oxidative stress in childhood—in health and disease states. Clin Nutr 23:3–11

    CAS  PubMed  Google Scholar 

  70. Dmitriev L (2007) The involvement of lipid radical cycles and the adenine nucleotide translocator in neurodegenerative diseases. J Alzheimers Dis 11:183–190

    CAS  PubMed  Google Scholar 

  71. Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364–395

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633. https://doi.org/10.4161/psb.22455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Murphy MP (2013) Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 18:145–146. https://doi.org/10.1016/j.cmet.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  74. Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu J-Q, Kerr BJ, Gutowski NJ et al (2017) Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 14:19. https://doi.org/10.1186/s12974-016-0788-z

  75. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

  76. Antunes dos Santos A, Ferrer B, Marques Gonçalves F, Tsatsakis A, Renieri E, Skalny A, Farina M, Rocha J et al (2018) Oxidative stress in methylmercury-induced cell toxicity. Toxics:6. https://doi.org/10.3390/toxics6030047

  77. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

  78. Yamazaki H, Tanji K, Wakabayashi K, Matsuura S, Itoh K (2015) Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathol Int 65:210–219

  79. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49. https://doi.org/10.1016/j.redox.2012.10.001

  80. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW (2014) Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A 111:15550–15555. https://doi.org/10.1073/pnas.1416940111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E (2016) Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 94:1488–1498

    CAS  PubMed  Google Scholar 

  82. Sandberg M, Patil J, D'angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306

    CAS  PubMed  Google Scholar 

  83. Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20(1 Suppl 1):S1-92-5

    PubMed  PubMed Central  Google Scholar 

  84. Solovyev ND (2015) Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling. J Inorg Biochem 153:1–12

    CAS  PubMed  Google Scholar 

  85. Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133. https://doi.org/10.1016/j.freeradbiomed.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  86. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    CAS  PubMed  Google Scholar 

  87. Bell J, MacKinlay E, Dick J, MacDonald D, Boyle R, Glen A (2004) Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids 71:201–204

    CAS  PubMed  Google Scholar 

  88. Osredkar J, Gosar D, Maček J, Kumer K, Fabjan T, Finderle P, Šterpin S, Zupan M et al (2019) Urinary markers of oxidative stress in children with autism spectrum disorder (ASD). Antioxidants (Basel) 8. https://doi.org/10.3390/antiox8060187

  89. Chauhan A, Chauhan V, Brown T (2010) Autism: oxidative stress, inflammation, and immune abnormalities. CRC Press, Boca Raton

    Google Scholar 

  90. McGinnis WR (2004) Oxidative stress in autism. Altern Ther Health Med 10:22–36

  91. Parker W, Hornik CD, Bilbo S, Holzknecht ZE, Gentry L, Rao R, Lin SS, Herbert MR et al (2017) The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J Int Med Res 45:407–438

  92. Bernhoft R, Buttar R (2008) Autism: a multi-system oxidative and inflammatory disorder. Townsend Letter 86–90

  93. James SJ, Rose S, Melnyk S, Jernigan S, Blossom S, Pavliv O, Gaylor DW (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23:2374–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A (2011) Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res 143:58–65

    CAS  PubMed  Google Scholar 

  95. Rose S, Melnyk S, Trusty TA, Pavliv O, Seidel L, Li J, Nick T, James SJ (2012) Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism. Autism Res Treat 2012:986519. https://doi.org/10.1155/2012/986519

    Article  PubMed  Google Scholar 

  96. Yao Y, Walsh WJ, McGinnis WR, Praticò D (2006) Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 63:1161–1164

    PubMed  Google Scholar 

  97. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807

  98. Ming X, Johnson WG, Stenroos ES, Mars A, Lambert GH, Buyske S (2010) Genetic variant of glutathione peroxidase 1 in autism. Brain and Development 32:105–109

    PubMed  Google Scholar 

  99. Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-Santiago MF, Lambert GH, Johnson WG (2007) Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr Adolesc Med 161:356–361

    PubMed  Google Scholar 

  100. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq A (2004) Polymorphisms in xenobiotic metabolism genes and autism. J Child Neurol 19:413–417

    PubMed  Google Scholar 

  101. Paşca SP, Nemeş B, Vlase L, Gagyi CE, Dronca E, Miu AC, Dronca M (2006) High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci 78:2244–2248

    PubMed  Google Scholar 

  102. Posar A, Visconti P (2017) Autism in 2016: the need for answers. J Pediatr 93:111–119. https://doi.org/10.1016/j.jped.2016.09.002

    Article  Google Scholar 

  103. Grabrucker AM (2013) Environmental factors in autism. Front Psychiatry 3:118. https://doi.org/10.3389/fpsyt.2012.00118

    Article  PubMed  PubMed Central  Google Scholar 

  104. Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14. https://doi.org/10.1186/1742-2094-1-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008) How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 29:190–201

    CAS  PubMed  Google Scholar 

  106. Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, Lintas C, De La Monte S, Deth RC (2013). Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 2013;8:e56927. https://doi.org/10.1371/journal.pone.0056927

  107. Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D et al (2010) Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125(Suppl 1):S1–S18. https://doi.org/10.1542/peds.2009-1878C10.1542/peds.2009-1878C

  108. Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, Heath D, Wood PL et al (2009) Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids 81:253–264. https://doi.org/10.1016/j.plefa.2009.06.003

  109. Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401. https://doi.org/10.1038/mp.2011.165

  110. Rossignol D, Frye R (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17:290–314. https://doi.org/10.1038/mp.2010.136

    Article  CAS  PubMed  Google Scholar 

  111. Xia W, Zhou Y, Sun C, Wang J, Wu L (2010) A preliminary study on nutritional status and intake in Chinese children with autism. Eur J Pediatr 169:1201–1206

    PubMed  Google Scholar 

  112. Chauhan V, Chauhan A, Cohen IL, Brown WT, Sheikh A (2004) Alteration in amino-glycerophospholipids levels in the plasma of children with autism: a potential biochemical diagnostic marker. Life Sci 74:1635–1643

    CAS  PubMed  Google Scholar 

  113. Jain SK (1985) In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 76:281–286

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–319

    CAS  PubMed  Google Scholar 

  115. Halliwell B, Gutteridge JM (1999) Free radicals, other reactive species and disease. In: Halliwell B, Gutteridge JM (eds) Free radicals in biology and medicine. Clarendon Press, Oxford, pp. 617–783

    Google Scholar 

  116. Jory J, McGinnis WR (2008) Red-cell trace minerals in children with autism. Am J Biochem Biotechnol 4:101–104

    CAS  Google Scholar 

  117. Stockler-Pinto M, Mafra D, Farage N, Boaventura G, Cozzolino S (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26:1065–1069

    CAS  PubMed  Google Scholar 

  118. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  PubMed  Google Scholar 

  119. Santamaría A, Salvatierra-Sánchez R, Vázquez-Román B, Santiago-López D, Villeda-Hernández J, Galván-Arzate S, Jiménez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: In vitro and in vivo studies. J Neurochem 86:479–488

    PubMed  Google Scholar 

  120. Skalny AV, Skalnaya MG, Bjørklund G, Gritsenko VA, Aaseth J, Tinkov AA (2018) Selenium and autism spectrum disorder. In: Michalke B (ed) Selenium. Molecular and Integrative Toxicology. Springer, Cham, pp. 193–210

    Google Scholar 

  121. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25:17–26

    CAS  Google Scholar 

  122. Song J, Park J, Oh Y, Lee JE (2015) Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. Oxidative Med Cell Longev 2015:426069. https://doi.org/10.1155/2015/426069

    Article  CAS  Google Scholar 

  123. Boris M, Goldblatt A, Galanko J, James SJ (2004) Association of MTHFR gene variants with autism. J Am Phys Surg 9:106–108

    Google Scholar 

  124. Bowers K, Li Q, Bressler J, Avramopoulos D, Newschaffer C, Fallin MD (2011) Glutathione pathway gene variation and risk of autism spectrum disorders. J Neurodev Disord 3:132–143. https://doi.org/10.1007/s11689-011-9077-4

    Article  PubMed  PubMed Central  Google Scholar 

  125. Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, Bonassi S (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141

    CAS  PubMed  Google Scholar 

  126. Goin-Kochel RP, Porter AE, Peters SU, Shinawi M, Sahoo T, Beaudet AL (2009) The MTHFR 677C→ T polymorphism and behaviors in children with autism: exploratory genotype–phenotype correlations. Autism Res 2:98–108

    PubMed  Google Scholar 

  127. Guo T, Chen H, Liu B, Ji W, Yang C (2012) Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet Test Mol Biomarkers 16:968–973. https://doi.org/10.1089/gtmb.2012.0091

    Article  CAS  PubMed  Google Scholar 

  128. Adams J, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S et al (2009) The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol 2009:532640. https://doi.org/10.1155/2009/532640

  129. Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, Malisardi G, Manfredini S et al (2013) Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One 8:e66418. https://doi.org/10.1371/journal.pone.0066418

  130. Gorrindo P, Lane CJ, Lee EB, McLaughlin B, Levitt P (2013) Enrichment of elevated plasma F2t-isoprostane levels in individuals with autism who are stratified by presence of gastrointestinal dysfunction. PLoS One 8:e68444. https://doi.org/10.1371/journal.pone.0068444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Coyle P, Philcox J, Carey L, Rofe A (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    CAS  PubMed  Google Scholar 

  132. Alonso-Gonzalez C, Mediavilla D, Martinez-Campa C, Gonzalez A, Cos S, Sanchez-Barcelo EJ (2008) Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa). Toxicol Lett 181:190–195

    CAS  PubMed  Google Scholar 

  133. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    CAS  PubMed  Google Scholar 

  134. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226

    CAS  PubMed  Google Scholar 

  135. Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, Mancardi G, Uccelli A et al (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110:1674–1684

  136. Penkowa M, Sørensen BL, Nielsen SL, Hansen PB (2009) Metallothionein as a useful marker in Hodgkin lymphoma subclassification. Leuk Lymphoma 50:200–210

    PubMed  Google Scholar 

  137. Vergani L, Lanza C, Borghi C, Scarabelli L, Panfoli I, Burlando B, Dondero F, Viarengo A et al (2007) Efects of growth hormone and cadmium on the transcription regulation of two metallothionein isoforms. Mol Cell Endocrinol 263:29–37

  138. Singh VK, Hanson J (2006) Assessment of metallothionein and antibodies to metallothionein in normal and autistic children having exposure to vaccine-derived thimerosal. Pediatr Allergy Immunol 17:291–296

    CAS  PubMed  Google Scholar 

  139. Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:150. https://doi.org/10.3389/fphys.2014.00150

    Article  PubMed  PubMed Central  Google Scholar 

  140. Muthaiyah B, Essa M, Chauhan V, Brown W, Wegiel J, Chauhan A (2009) Increased lipid peroxidation in cerebellum and temporal cortex of brain in autism: Op04-02. J Neurochem 108(Suppl. 1):73

    Google Scholar 

  141. Chauhan A, Audhya T, Chauhan V (2011) Increased DNA oxidation in the cerebellum, frontal and temporal cortex of brain in autism. Trans Am Soc Neurochem 42:81

    Google Scholar 

  142. Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8:366–372

    CAS  PubMed  Google Scholar 

  143. Yui K, Tanuma N, Yamada H, Kawasaki Y (2017) Decreased total antioxidant capacity has a larger effect size than increased oxidant levels in urine in individuals with autism spectrum disorder. Environ Sci Pollut Res Int 24:9635–9644. https://doi.org/10.1007/s11356-017-8595-3

    Article  CAS  PubMed  Google Scholar 

  144. Lopez-Hurtado E, Prieto JJ (2008) A microscopic study of language-related cortex in autism. Am J Biochem Biotechnol 4:130–145

    Google Scholar 

  145. Chauhan A, Audhya T, Chauhan V (2012) Brain region-specific glutathione redox imbalance in autism. Neurochem Res 37:1681–1689

    CAS  PubMed  Google Scholar 

  146. Rose S, Melnyk S, Pavliv O, Bai S, Nick T, Frye R, James S (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134. https://doi.org/10.1038/tp.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Freeman LR, Keller JN (2012) Oxidative stress and cerebral endothelial cells: regulation of the blood–brain-barrier and antioxidant based interventions. Biochim Biophys Acta 1822:822–829. https://doi.org/10.1016/j.bbadis.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  148. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    CAS  PubMed  Google Scholar 

  149. Ellwanger JH, Franke SI, Bordin DL, Pra D, Henriques JA (2016) Biological functions of selenium and its potential influence on Parkinson’s disease. An Acad Bras Cienc 88:1655–1674

    CAS  PubMed  Google Scholar 

  150. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  151. Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, Wade RC, Hecker M et al (2018) Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol 16:113–122

  152. Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 101:566–576

    CAS  PubMed  Google Scholar 

  153. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    CAS  PubMed  Google Scholar 

  155. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476

    CAS  PubMed  Google Scholar 

  156. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Google Scholar 

  157. Tayarani I, Chaudiere J, Lefauconnier JM, Bourre JM (1987) Enzymatic protection against peroxidative damage in isolated brain capillaries. J Neurochem 48:1399–1402

    CAS  PubMed  Google Scholar 

  158. Agarwal R, Shukla GS (1999) Potential role of cerebral glutathione in the maintenance of blood-brain barrier integrity in rat. Neurochem Res 24:1507–1514

    CAS  PubMed  Google Scholar 

  159. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A (2012) Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19:4000–4005

    CAS  PubMed  Google Scholar 

  161. Gu Y, Dee CM, Shen J (2011) Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 3:1216–1231

    Google Scholar 

  162. Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK et al (2012) Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood–brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 120:147–156

  163. Tinggi U (2008) Selenium: Its role as antioxidant in human health. Environ Health Prev Med 13:102–108. https://doi.org/10.1007/s12199-007-0019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drugs Aging 18:685–716

    CAS  PubMed  Google Scholar 

  165. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    PubMed  Google Scholar 

  166. Devasagayam T, Boloor K, Ramasarma T (2003) Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys 40:300–308

    CAS  PubMed  Google Scholar 

  167. Markesbery W, Lovell M (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36

    CAS  PubMed  Google Scholar 

  168. Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 1801:924–929. https://doi.org/10.1016/j.bbalip.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Asp Med 24:293–303

    CAS  Google Scholar 

  170. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12. https://doi.org/10.3389/fnagi.2010.00012

    Article  PubMed  PubMed Central  Google Scholar 

  171. Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27:489–495

    CAS  PubMed  Google Scholar 

  172. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Dávila D, Torres-Aleman I (2008) Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 19:2014–2025

    PubMed  PubMed Central  Google Scholar 

  174. Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, Reus VI, Verhoeven JE et al (2017) Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 76:197–205

  175. Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M (2017) A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 74:1–20

    CAS  PubMed  Google Scholar 

  176. Sawa A, Sedlak TW (2016) Oxidative stress and inflammation in schizophrenia. Schizophr Res 176:1–2

    PubMed  Google Scholar 

  177. Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89:1669–1680

    CAS  PubMed  Google Scholar 

  178. Erden-İnal M, Sunal E, Kanbak G (2002) Age-related changes in the glutathione redox system. Cell Biochem Funct 20:61–66

    PubMed  Google Scholar 

  179. Feng C, Chen Y, Pan J, Yang A, Niu L, Min J, Meng X, Liao L et al (2017) Redox proteomic identification of carbonylated proteins in autism plasma: insight into oxidative stress and its related biomarkers in autism. Clin Proteomics 14:2. https://doi.org/10.1186/s12014-017-9138-0

  180. Morakotsriwan N, Wattanathorn J, Kirisattayakul W, Chaisiwamongkol K (2016) Autistic-like behaviors, oxidative stress status, and histopathological changes in cerebellum of valproic acid rat model of autism are improved by the combined extract of purple rice and silkworm pupae. Oxidative Med Cell Longev 2016:3206561. https://doi.org/10.1155/2016/3206561

  181. Poggi C, Dani C (2018) Sepsis and oxidative stress in the newborn: from pathogenesis to novel therapeutic targets. Oxidative Med Cell Longev 2018:9390140. https://doi.org/10.1155/2018/9390140

    Article  CAS  Google Scholar 

  182. Schiavone S, Colaianna M, Curtis L (2015) Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress. Curr Pharm Des 21:1404–1412

    CAS  PubMed  Google Scholar 

  183. Brunst KJ, Baccarelli AA, Wright RJ (2015) Integrating mitochondriomics in children’s environmental health. J Appl Toxicol 35:976–991

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Meguid NA, Anwar M, Bjørklund G, Hashish A, Chirumbolo S, Hemimi M, Sultan E (2017) Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab Brain Dis 32:607–615

    PubMed  Google Scholar 

  185. Main PA, Angley MT, Thomas P, O’Doherty CE, Fenech M (2010) Folate and methionine metabolism in autism: a systematic review. Am J Clin Nutr 91:1598–1620

    CAS  PubMed  Google Scholar 

  186. Hegazy HG, Ali EH, Elgoly AHM (2015) Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 71:173–180

    CAS  PubMed  Google Scholar 

  187. Chirumbolo S, Bjørklund G, Sboarina A, Vella A (2017) The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther 39:894–916

    CAS  PubMed  Google Scholar 

  188. Crăciun EC, Bjørklund G, Tinkov AA, Urbina MA, Skalny AV, Rad F, Dronca E (2016) Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab Brain Dis 31:887–890

    PubMed  Google Scholar 

  189. Al-Mosalem O, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin Biochem 42:949–957

    CAS  PubMed  Google Scholar 

  190. Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002) Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17:833–837

    PubMed  Google Scholar 

  191. Hassan WM, Al-Ayadhi L, Bjørklund G, Alabdali A, Chirumbolo S, El-Ansary A (2018) The use of multi-parametric biomarker profiles may increase the accuracy of ASD prediction. J Mol Neurosci 66:85–101. https://doi.org/10.1007/s12031-018-1136-9

    Article  CAS  PubMed  Google Scholar 

  192. Montuschi P, Barnes PJ, Roberts LJ (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800

    CAS  PubMed  Google Scholar 

  193. Qasem H, Al-Ayadhi L, El-Ansary A (2016). Cysteinyl leukotriene correlated with 8-isoprostane levels as predictive biomarkers for sensory dysfunction in autism. Lipids Health Dis 2016 Aug 17;15:130. https://doi.org/10.1186/s12944-016-0298-0

  194. Zoroğlu SS, Yürekli M, Meram İ, Söğüt S, Tutkun H, Yetkin O, Sivasli E, Savaş HA et al (2003) Pathophysiological role of nitric oxide and adrenomedullin in autism. Cell Biochem Funct 21:55–60

  195. Frye R, Rose S, Chacko J, Wynne R, Bennuri S, Slattery J, Tippett M, Delhey L et al (2016) Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines. Transl Psychiatry 6:e927. https://doi.org/10.1038/tp.2016.189

  196. Nakamura S, Shimazawa M, Hara H (2018) Physiological roles of metallothioneins in central nervous system diseases. Biol Pharm Bull 41:1006–1013

    CAS  PubMed  Google Scholar 

  197. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63:68–78

    PubMed  Google Scholar 

  198. Stern BR, Solioz M, Krewski D, Aggett P, Aw TC, Baker S, Crump K, Dourson M et al (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health B Crit Rev 10:157–222

  199. Faber S, Zinn GM, Kern Ii JC, Skip Kingston H (2009) The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14:171–180

    CAS  PubMed  Google Scholar 

  200. Bjørklund G (2013) The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Wars) 73:225–236

    Google Scholar 

  201. Borrás C, Sastre J, García-Sala D, Lloret A, Pallardó FV, Viña J (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 34:546–552

    PubMed  Google Scholar 

  202. Bjørklund G, Chirumbolo S (2017) Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 33:311–321

    PubMed  Google Scholar 

  203. Qasem H, Al-Ayadhi L, Bjørklund G, Chirumbolo S, El-Ansary A (2018) Impaired lipid metabolism markers to assess the risk of neuroinflammation in autism spectrum disorder. Metab Brain Dis 1–13

  204. Zhang Q-b, Gao S-j, Zhao H-x (2015) Thioredoxin: a novel, independent diagnosis marker in children with autism. Int J Dev Neurosci 40:92–96

    CAS  PubMed  Google Scholar 

  205. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules–from biology to health and disease. Antioxid Redox Signal 9:25–47

    CAS  PubMed  Google Scholar 

  206. Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J (2018) The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci:1–20

  207. Ghanizadeh A, Moghimi-Sarani E (2013) A randomized double blind placebo controlled clinical trial of N-acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 13:196. https://doi.org/10.1186/1471-244X-13-196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kałużna-Czaplińska J, Żurawicz E, Michalska M, Rynkowski J (2013) A focus on homocysteine in autism. Acta Biochim Pol 60:137–142

    PubMed  Google Scholar 

  209. Tu WJ, Yin CH, Guo YQ, Li SO, Chen H, Zhang Y, Feng YL, Long BH (2013) Serum homocysteine concentrations in Chinese children with autism. Clin Chem Lab Med 51:e19–e22. https://doi.org/10.1515/cclm-2012-0196

    Article  CAS  PubMed  Google Scholar 

  210. Endres D, van Elst LT, Meyer SA, Feige B, Nickel K, Bubl A, Riedel A, Ebert D et al (2017) Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol Autism 8(1):10. https://doi.org/10.1186/s13229-017-0122-3

  211. Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR (2016) The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol 37:8–24

    CAS  PubMed  Google Scholar 

  212. Siddiqui MF, Elwell C, Johnson MH (2016) Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access 6. https://doi.org/10.4172/2165-7890.1000190

  213. Al-Otaish H, Al-Ayadhi L, Bjørklund G, Chirumbolo S, Urbina MA, El-Ansary A (2018) Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab Brain Dis 33:843–854

    CAS  PubMed  Google Scholar 

  214. Rojas DC, Singel D, Steinmetz S, Hepburn S, Brown MS (2014) Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage 86:28–34

    CAS  PubMed  Google Scholar 

  215. El-Ansary A, Bjørklund G, Chirumbolo S, Alnakhli OM (2017) Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder. Metab Brain Dis 32:1209–1221

    CAS  PubMed  Google Scholar 

  216. Mawe G, Coates M, Moses P (2006) Intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther 23:1067–1076

    CAS  PubMed  Google Scholar 

  217. Montgomery AK, Shuffrey LC, Guter SJ, Anderson GM, Jacob S, Mosconi MW, Sweeney JA, Turner JB et al (2018) Maternal serotonin levels are associated with cognitive ability and core symptoms in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 57:867–875. https://doi.org/10.1016/j.jaac.2018.06.025

  218. Edwards KA, Madden AM, Zup SL (2018) Serotonin receptor regulation as a potential mechanism for sexually dimorphic oxytocin dysregulation in a model of autism. Brain Res 1701:85–92

    CAS  PubMed  Google Scholar 

  219. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45

    CAS  PubMed  Google Scholar 

  220. Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Zoheir KM, Al-ayadhi LY, Alzahrani MZ et al (2017) Imbalance between the anti-and pro-inflammatory milieu in blood leukocytes of autistic children. Mol Immunol 82:57–65

  221. Mostafa GA, Bjørklund G, Urbina MA, Al-Ayadhi LY (2016) The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab Brain Dis 31:1047–1054

    CAS  PubMed  Google Scholar 

  222. Saad K, Elserogy Y, Al-Atram AA, Mohamad IL, ElMelegy TT, Bjørklund G, El-Houfy AA (2015) ADHD, autism and neuroradiological complications among phenylketonuric children in upper Egypt. Acta Neurol Belg 115:657–663

    PubMed  Google Scholar 

  223. Skalny A, Simashkova N, Skalnaya M, Klyushnik T, Chernova L, Tinkov A (2018) Mercury and autism spectrum disorders (in Russian). Zh Nevrol Psikhiatr Im S S Korsakova 118:75–79. https://doi.org/10.17116/jnevro20181185275

    Article  CAS  PubMed  Google Scholar 

  224. Saghazadeh A, Rezaei N (2017) Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuro-Psychopharmacol Biol Psychiatry 79:340–368

    CAS  Google Scholar 

  225. Adams J, Howsmon DP, Kruger U, Geis E, Gehn E, Fimbres V, Pollard E, Mitchell J et al (2017) Significant association of urinary toxic metals and autism-related symptoms—a nonlinear statistical analysis with cross validation. PLoS One 12:e0169526. https://doi.org/10.1371/journal.pone.0169526

  226. Qin YY, Jian B, Wu C, Jiang CZ, Kang Y, Zhou JX, Yang F, Liang Y (2018) A comparison of blood metal levels in autism spectrum disorder and unaffected children in Shenzhen of China and factors involved in bioaccumulation of metals. Environ Sci Pollut Res Int 25:17950–17956. https://doi.org/10.1007/s11356-018-1957-7

    Article  CAS  PubMed  Google Scholar 

  227. Wu J, Liu DJ, Shou XJ, Zhang JS, Meng FC, Liu YQ, Han SP, Zhang R et al (2018) Chinese children with autism: a multiple chemical elements profile in erythrocytes. Autism Res 11:834–845. https://doi.org/10.1002/aur.1949

  228. Metwally FM, Abdelraoof ER, Rashad H, Hasheesh A, Elsedfy Z, Gebril O, Meguid N (2015) Toxic effect of some heavy metals in Egyptian autistic children. Int J Pharm Clin Res 7:206–211

    Google Scholar 

  229. Yasuda H, Yasuda Y, Tsutsui T (2013) Estimation of autistic children by metallomics analysis. Sci Rep 3:1199. https://doi.org/10.1038/srep01199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yasuda H, Tsutsui T (2013) Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs). Int J Environ Res Public Health 10:6027–6043

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Mold M, Umar D, King A, Exley C (2018) Aluminium in brain tissue in autism. J Trace Elem Med Biol 46:76–82

    CAS  PubMed  Google Scholar 

  232. Gorini F, Muratori F, Morales MA (2014) The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev J Autism Dev Disord 1:354–372. https://doi.org/10.1007/s40489-014-0028-3

    Article  Google Scholar 

  233. Adams JB, Romdalvik J, Levine K, Hu LW (2008) Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol Environ Chem 90:739–753

    CAS  Google Scholar 

  234. Geier DA, Kern JK, Geier MR (2017) Increased risk for an atypical autism diagnosis following thimerosal-containing vaccine exposure in the United States: a prospective longitudinal case-control study in the vaccine safety datalink. J Trace Elem Med Biol 42:18–24

    CAS  PubMed  Google Scholar 

  235. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2013:316523. https://doi.org/10.1155/2013/316523

    Article  CAS  Google Scholar 

  236. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    CAS  PubMed  Google Scholar 

  237. Yang X (2012) Oxidative stress and autism. Int J Pediatr 39:99–101

    CAS  Google Scholar 

  238. Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T et al (2014) Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med 239:697–706

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Bjørklund.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørklund, G., Meguid, N.A., El-Bana, M.A. et al. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 57, 2314–2332 (2020). https://doi.org/10.1007/s12035-019-01742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01742-2

Keywords

Navigation