Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin


In the present study, we investigated whether mutant huntingtin (mHTT) impairs mitochondrial functions in human striatal neurons derived from induced pluripotent stem cells (iPSCs). Striatal neurons and astrocytes derived from iPSCs from unaffected individuals (Ctrl) and Huntington’s disease (HD) patients with HTT gene containing increased number of CAG repeats were used to assess the effect of mHTT on bioenergetics and mitochondrial superoxide anion production. The human neurons were thoroughly characterized and shown to express MAP2, DARPP32, GABA, synapsin, and PSD95. In human neurons and astrocytes expressing mHTT, the ratio of mHTT to wild-type huntingtin (HTT) was 1:1. The human neurons were excitable and could generate action potentials, confirming successful conversion of iPSCs into functional neurons. The neurons and astrocytes from Ctrl individuals and HD patients had similar levels of ADP and ATP and comparable respiratory and glycolytic activities. The mitochondrial mass, mitochondrial membrane potential, and superoxide anion production in human neurons appeared to be similar regardless of mHTT presence. The present results are in line with the results obtained in our previous studies with isolated brain mitochondria and cultured striatal neurons from YAC128 and R6/2 mice, in which we demonstrated that mutant huntingtin at early stages of HD pathology does not deteriorate mitochondrial functions. Overall, our results argue against bioenergetic deficits as a factor in HD pathogenesis and suggest that other detrimental processes might be more relevant to the development of HD pathology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Mutant huntingtin


Wild-type huntingtin


Induced pluripotent stem cells


Human medium spiny neurons


Huntington’s disease


Reactive oxygen species


Brain-derived neurotrophic factor


Glia-derived neurotrophic factor




Oxygen consumption rates


Extracellular acidification rates


Tetramethylrhodamine, methyl ester


Tyrosine hydroxylase


Action potentials




Carbonyl cyanide p-trifluoromethoxyphenylhydrazone


Human embryonic stem cells




Antimycin A


  1. 1.

    Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    CAS  PubMed  Google Scholar 

  2. 2.

    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Google Scholar 

  3. 3.

    Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31(12):609–616

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Browne SE (2008) Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 1147:358–382

    CAS  PubMed  Google Scholar 

  5. 5.

    Reddy PH, Mao P, Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev 61(1):33–48

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Damiano M, Galvan L, Deglon N, Brouillet E (2010) Mitochondria in Huntington’s disease. Biochim Biophys Acta 1802(1):52–61

    CAS  PubMed  Google Scholar 

  7. 7.

    Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19(20):3919–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, Malorni W, Davies KJ et al (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2(12):490–503

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J et al (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17(3):377–382

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20(7):1438–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V et al (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24(18):8195–8209

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22(2):388–400

    CAS  PubMed  Google Scholar 

  13. 13.

    Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG et al (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28(11):2783–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21(2):406–420

    CAS  PubMed  Google Scholar 

  15. 15.

    Brustovetsky N (2016) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol 53(5):2944–2953

    CAS  PubMed  Google Scholar 

  16. 16.

    Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N (2015) Oxidative metabolism in YAC128 mouse model of Huntington’s disease. Hum Mol Genet 24(17):4862–4878

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Pellman JJ, Hamilton J, Brustovetsky T, Brustovetsky N (2015) Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington’s disease. J Neurochem 134(4):652–667

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N (2016) Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington’s disease. Hum Mol Genet 25(13):2762–2775

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hamilton J, Brustovetsky T, Brustovetsky N (2017) Oxidative metabolism and Ca2+ handling in striatal mitochondria from YAC128 mice, a model of Huntington’s disease. Neurochem Int 109:24–33

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567

    CAS  PubMed  Google Scholar 

  21. 21.

    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    CAS  PubMed  Google Scholar 

  22. 22.

    Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B et al (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 21(3):341–352

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ohlemacher SK, Iglesias CL, Sridhar A, Gamm DM, Meyer JS (2015) Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol 321H(8):1–1H.8.20

    Google Scholar 

  25. 25.

    Kimmich GA, Randles J, Brand JS (1975) Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Anal Biochem 69(1):187–206

    CAS  PubMed  Google Scholar 

  26. 26.

    Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425

    PubMed  Google Scholar 

  27. 27.

    Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolanos JP, Culmsee C, Dawson VL et al (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 25(3):542–572

    CAS  PubMed  Google Scholar 

  28. 28.

    Polster BM, Nicholls DG, Ge SX, Roelofs BA (2014) Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol 547:225–250

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kirwan P, Turner-Bridger B, Peter M, Momoh A, Arambepola D, Robinson HP, Livesey FJ (2015) Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro. Development 142(18):3178–3187

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2RRN1193

  32. 32.

    Oliveira JM, Jekabsons MB, Chen S, Lin A, Rego AC, Goncalves J, Ellerby LM, Nicholls DG (2007) Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J Neurochem 101(1):241–249

    CAS  PubMed  Google Scholar 

  33. 33.

    Gouarne C, Tardif G, Tracz J, Latyszenok V, Michaud M, Clemens LE, Yu-Taeger L, Nguyen HP et al (2013) Early deficits in glycolysis are specific to striatal neurons from a rat model of Huntington disease. PLoS One 8(11):e81528

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mookerjee SA, Nicholls DG, Brand MD (2016) Determining maximum glycolytic capacity using extracellular flux measurements. PLoS One 11(3):e0152016

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol 810:119–133

    CAS  PubMed  Google Scholar 

  36. 36.

    Camnasio S, Delli CA, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo RP et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46(1):41–51

    CAS  PubMed  Google Scholar 

  37. 37.

    Chae JI, Kim DW, Lee N, Jeon YJ, Jeon I, Kwon J, Kim J, Soh Y et al (2012) Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington’s disease patient. Biochem J 446(3):359–371

    CAS  PubMed  Google Scholar 

  38. 38.

    Mattis VB, Svendsen SP, Ebert A, Svendsen CN, King AR, Casale M, Winokur ST, Castiglioni V et al (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278

    PubMed Central  Google Scholar 

  39. 39.

    Kedaigle AJ, Fraenkel E, Atwal RS, Wu M, Gusella JF, MacDonald ME, Kaye JA, Finkbeiner S et al (2019) Bioenergetic deficits in Huntington’s disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet.

  40. 40.

    Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406

    CAS  PubMed  Google Scholar 

  41. 41.

    Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–981

    CAS  PubMed  Google Scholar 

  43. 43.

    Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Niclis JC, Pinar A, Haynes JM, Alsanie W, Jenny R, Dottori M, Cram DS (2013) Characterization of forebrain neurons derived from late-onset Huntington’s disease human embryonic stem cell lines. Front Cell Neurosci 7:37

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145(4):1233–1248

    CAS  PubMed  Google Scholar 

  46. 46.

    Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ et al (2012) Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep 2(5):1137–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yin X, Manczak M, Reddy PH (2016) Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet 25(9):1739–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Polyzos AA, Wood NI, Williams P, Wipf P, Morton AJ, McMurray CT (2018) XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex-dependent. PLoS One 13(4):e0194580

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Alam ZI, Halliwell B, Jenner P (2000) No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington’s disease. J Neurochem 75(2):840–846

    CAS  PubMed  Google Scholar 

  50. 50.

    Perevoshchikova IV, Gerencser AA, Brand MD (2015) Lack of oxidative stress in a mouse neural cell stem cell model of Huntington’s disease. Free Radic Biol Med 87:S32

    Google Scholar 

  51. 51.

    Brocardo PS, McGinnis E, Christie BR, Gil-Mohapel J (2016) Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Res 19(2):140–148

    CAS  PubMed  Google Scholar 

  52. 52.

    Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez-Marin A, Castro MR, Ayala-Pena S et al (2016) Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet 25(9):1792–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A et al (2017) Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in Huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep 8(3):619–633

    CAS  Google Scholar 

  54. 54.

    Polyzos AA, McMurray CT (2016) The chicken or the egg: mitochondrial dysfunction and oxidative damage as a cause or consequence of toxicity in Huntington’s disease. Mech Ageing Dev 161(Pt A):181–197

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P et al (2019) Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in Huntington mice. Cell Metab 291–216

Download references


We are very thankful to Dr. George Daley (Harvard University, Cambridge, MA) and Dr. David Gamm (University of Wisconsin, Madison, WI) for providing human undifferentiated induced pluripotent stem cells.


This study was supported by National Institutes of Health grant R01 NS098772 and in part by a grant from Indiana Traumatic Spinal Cord & Brain Injury Research Fund to N.B.

Author information



Corresponding author

Correspondence to Nickolay Brustovetsky.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 12674 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamilton, J., Brustovetsky, T., Sridhar, A. et al. Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin. Mol Neurobiol 57, 668–684 (2020).

Download citation


  • Huntington’s disease
  • Mitochondria
  • Neurons
  • Respiration
  • Glycolysis
  • Reactive oxygen species