Advertisement

Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin

  • James Hamilton
  • Tatiana Brustovetsky
  • Akshayalakshmi Sridhar
  • Yanling Pan
  • Theodore R. Cummins
  • Jason S. Meyer
  • Nickolay BrustovetskyEmail author
Article

Abstract

In the present study, we investigated whether mutant huntingtin (mHTT) impairs mitochondrial functions in human striatal neurons derived from induced pluripotent stem cells (iPSCs). Striatal neurons and astrocytes derived from iPSCs from unaffected individuals (Ctrl) and Huntington’s disease (HD) patients with HTT gene containing increased number of CAG repeats were used to assess the effect of mHTT on bioenergetics and mitochondrial superoxide anion production. The human neurons were thoroughly characterized and shown to express MAP2, DARPP32, GABA, synapsin, and PSD95. In human neurons and astrocytes expressing mHTT, the ratio of mHTT to wild-type huntingtin (HTT) was 1:1. The human neurons were excitable and could generate action potentials, confirming successful conversion of iPSCs into functional neurons. The neurons and astrocytes from Ctrl individuals and HD patients had similar levels of ADP and ATP and comparable respiratory and glycolytic activities. The mitochondrial mass, mitochondrial membrane potential, and superoxide anion production in human neurons appeared to be similar regardless of mHTT presence. The present results are in line with the results obtained in our previous studies with isolated brain mitochondria and cultured striatal neurons from YAC128 and R6/2 mice, in which we demonstrated that mutant huntingtin at early stages of HD pathology does not deteriorate mitochondrial functions. Overall, our results argue against bioenergetic deficits as a factor in HD pathogenesis and suggest that other detrimental processes might be more relevant to the development of HD pathology.

Keywords

Huntington’s disease Mitochondria Neurons Respiration Glycolysis Reactive oxygen species 

Abbreviations

mHTT

Mutant huntingtin

HTT

Wild-type huntingtin

iPSCs

Induced pluripotent stem cells

neurons

Human medium spiny neurons

HD

Huntington’s disease

ROS

Reactive oxygen species

BDNF

Brain-derived neurotrophic factor

GDNF

Glia-derived neurotrophic factor

DAPI

2-(4-Amidinophenyl)-1H-indole-6-carboxamidine

OCRs

Oxygen consumption rates

ECARs

Extracellular acidification rates

TMRM

Tetramethylrhodamine, methyl ester

TH

Tyrosine hydroxylase

AP

Action potentials

2,4-DNP

2,4-Dinitrophenol

FCCP

Carbonyl cyanide p-trifluoromethoxyphenylhydrazone

(hESCs)

Human embryonic stem cells

polyQ

Poly-glutamine

Ant

Antimycin A

Notes

Acknowledgments

We are very thankful to Dr. George Daley (Harvard University, Cambridge, MA) and Dr. David Gamm (University of Wisconsin, Madison, WI) for providing human undifferentiated induced pluripotent stem cells.

Funding Information

This study was supported by National Institutes of Health grant R01 NS098772 and in part by a grant from Indiana Traumatic Spinal Cord & Brain Injury Research Fund to N.B.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interests.

Supplementary material

12035_2019_1734_MOESM1_ESM.docx (12.4 mb)
ESM 1 (DOCX 12674 kb)

References

  1. 1.
    Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384PubMedGoogle Scholar
  2. 2.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983Google Scholar
  3. 3.
    Bossy-Wetzel E, Petrilli A, Knott AB (2008) Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 31(12):609–616PubMedPubMedCentralGoogle Scholar
  4. 4.
    Browne SE (2008) Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 1147:358–382PubMedGoogle Scholar
  5. 5.
    Reddy PH, Mao P, Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev 61(1):33–48PubMedPubMedCentralGoogle Scholar
  6. 6.
    Damiano M, Galvan L, Deglon N, Brouillet E (2010) Mitochondria in Huntington’s disease. Biochim Biophys Acta 1802(1):52–61PubMedGoogle Scholar
  7. 7.
    Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19(20):3919–3935PubMedPubMedCentralGoogle Scholar
  8. 8.
    Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, Malorni W, Davies KJ et al (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2(12):490–503PubMedPubMedCentralGoogle Scholar
  9. 9.
    Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J et al (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17(3):377–382PubMedPubMedCentralGoogle Scholar
  10. 10.
    Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20(7):1438–1455PubMedPubMedCentralGoogle Scholar
  11. 11.
    Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V et al (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24(18):8195–8209PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 22(2):388–400PubMedGoogle Scholar
  13. 13.
    Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG et al (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28(11):2783–2792PubMedPubMedCentralGoogle Scholar
  14. 14.
    Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21(2):406–420PubMedGoogle Scholar
  15. 15.
    Brustovetsky N (2016) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol 53(5):2944–2953PubMedGoogle Scholar
  16. 16.
    Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N (2015) Oxidative metabolism in YAC128 mouse model of Huntington’s disease. Hum Mol Genet 24(17):4862–4878PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pellman JJ, Hamilton J, Brustovetsky T, Brustovetsky N (2015) Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington’s disease. J Neurochem 134(4):652–667PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N (2016) Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington’s disease. Hum Mol Genet 25(13):2762–2775PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hamilton J, Brustovetsky T, Brustovetsky N (2017) Oxidative metabolism and Ca2+ handling in striatal mitochondria from YAC128 mice, a model of Huntington’s disease. Neurochem Int 109:24–33PubMedPubMedCentralGoogle Scholar
  20. 20.
    Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567PubMedGoogle Scholar
  21. 21.
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506PubMedGoogle Scholar
  22. 22.
    Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B et al (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 21(3):341–352PubMedPubMedCentralGoogle Scholar
  23. 23.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ohlemacher SK, Iglesias CL, Sridhar A, Gamm DM, Meyer JS (2015) Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol 321H(8):1–1H.8.20Google Scholar
  25. 25.
    Kimmich GA, Randles J, Brand JS (1975) Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Anal Biochem 69(1):187–206PubMedGoogle Scholar
  26. 26.
    Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425PubMedGoogle Scholar
  27. 27.
    Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolanos JP, Culmsee C, Dawson VL et al (2018) Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 25(3):542–572PubMedGoogle Scholar
  28. 28.
    Polster BM, Nicholls DG, Ge SX, Roelofs BA (2014) Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol 547:225–250PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kirwan P, Turner-Bridger B, Peter M, Momoh A, Arambepola D, Robinson HP, Livesey FJ (2015) Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro. Development 142(18):3178–3187PubMedPubMedCentralGoogle Scholar
  30. 30.
    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2RRN1193Google Scholar
  32. 32.
    Oliveira JM, Jekabsons MB, Chen S, Lin A, Rego AC, Goncalves J, Ellerby LM, Nicholls DG (2007) Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J Neurochem 101(1):241–249PubMedGoogle Scholar
  33. 33.
    Gouarne C, Tardif G, Tracz J, Latyszenok V, Michaud M, Clemens LE, Yu-Taeger L, Nguyen HP et al (2013) Early deficits in glycolysis are specific to striatal neurons from a rat model of Huntington disease. PLoS One 8(11):e81528PubMedPubMedCentralGoogle Scholar
  34. 34.
    Mookerjee SA, Nicholls DG, Brand MD (2016) Determining maximum glycolytic capacity using extracellular flux measurements. PLoS One 11(3):e0152016PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nicholls DG (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol 810:119–133PubMedGoogle Scholar
  36. 36.
    Camnasio S, Delli CA, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo RP et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46(1):41–51PubMedGoogle Scholar
  37. 37.
    Chae JI, Kim DW, Lee N, Jeon YJ, Jeon I, Kwon J, Kim J, Soh Y et al (2012) Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington’s disease patient. Biochem J 446(3):359–371PubMedGoogle Scholar
  38. 38.
    Mattis VB, Svendsen SP, Ebert A, Svendsen CN, King AR, Casale M, Winokur ST, Castiglioni V et al (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278PubMedCentralGoogle Scholar
  39. 39.
    Kedaigle AJ, Fraenkel E, Atwal RS, Wu M, Gusella JF, MacDonald ME, Kaye JA, Finkbeiner S et al (2019) Bioenergetic deficits in Huntington’s disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddy430
  40. 40.
    Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406PubMedGoogle Scholar
  41. 41.
    Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262PubMedPubMedCentralGoogle Scholar
  42. 42.
    Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–981PubMedGoogle Scholar
  43. 43.
    Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705PubMedPubMedCentralGoogle Scholar
  44. 44.
    Niclis JC, Pinar A, Haynes JM, Alsanie W, Jenny R, Dottori M, Cram DS (2013) Characterization of forebrain neurons derived from late-onset Huntington’s disease human embryonic stem cell lines. Front Cell Neurosci 7:37PubMedPubMedCentralGoogle Scholar
  45. 45.
    Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145(4):1233–1248PubMedGoogle Scholar
  46. 46.
    Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ et al (2012) Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep 2(5):1137–1142PubMedPubMedCentralGoogle Scholar
  47. 47.
    Yin X, Manczak M, Reddy PH (2016) Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet 25(9):1739–1753PubMedPubMedCentralGoogle Scholar
  48. 48.
    Polyzos AA, Wood NI, Williams P, Wipf P, Morton AJ, McMurray CT (2018) XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex-dependent. PLoS One 13(4):e0194580PubMedPubMedCentralGoogle Scholar
  49. 49.
    Alam ZI, Halliwell B, Jenner P (2000) No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington’s disease. J Neurochem 75(2):840–846PubMedGoogle Scholar
  50. 50.
    Perevoshchikova IV, Gerencser AA, Brand MD (2015) Lack of oxidative stress in a mouse neural cell stem cell model of Huntington’s disease. Free Radic Biol Med 87:S32Google Scholar
  51. 51.
    Brocardo PS, McGinnis E, Christie BR, Gil-Mohapel J (2016) Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Res 19(2):140–148PubMedGoogle Scholar
  52. 52.
    Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez-Marin A, Castro MR, Ayala-Pena S et al (2016) Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet 25(9):1792–1802PubMedPubMedCentralGoogle Scholar
  53. 53.
    Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A et al (2017) Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in Huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep 8(3):619–633Google Scholar
  54. 54.
    Polyzos AA, McMurray CT (2016) The chicken or the egg: mitochondrial dysfunction and oxidative damage as a cause or consequence of toxicity in Huntington’s disease. Mech Ageing Dev 161(Pt A):181–197PubMedPubMedCentralGoogle Scholar
  55. 55.
    Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P et al (2019) Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in Huntington mice. Cell Metab 291–216Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, School of MedicineIndiana UniversityIndianapolisUSA
  2. 2.Program in Medical Neuroscience, School of MedicineIndiana UniversityIndianapolisUSA
  3. 3.Paul and Carole Stark Neurosciences Research Institute, School of MedicineIndiana UniversityIndianapolisUSA
  4. 4.Department of Biology, School of ScienceIUPUIIndianapolisUSA
  5. 5.Indiana University School of MedicineIndianapolisUSA

Personalised recommendations