Skip to main content

Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders

Abstract

In recent years, neurological disorders have globally become a leading cause of disability and death. Neurological disorders are very common in both high- and low-income countries, and the number of patients is predicted to increase in the coming decades. Disorders caused by the expanded trinucleotide repeats (CAG, CGG, CCG, CTG, CUG, GAA, and GCN) in the genome, also described as trinucleotide repeat expansion disorders (TREDs), comprise of the major class of neurological diseases. Various TREDs have different modes of pathogenesis, but the severity and time of onset of disease depends on the trinucleotide repeat numbers. Numerous therapeutic strategies, including symptomatic treatment, blockage of mutant protein synthesis, targeting the toxic protein aggregates and degradation of RNA transcripts have been developed for the treatment of these diseases. However, various limitations to these therapeutic strategies have been reported, and therefore, researchers are exploring different avenues of therapeutics development. One of the recent developments include targeting the expanded repeats with small molecules. Small molecule binds with the secondary/tertiary structure of RNA (like bulges, loops, and hairpins) irrespective of its sequences. Altogether, small molecule-based therapeutics may have the advantage over others to be able to overcome the hurdles of the blood–brain barrier, poor absorption, and allergic reactions. In this review, we have summarized various TREDs and envisage the potential of small molecule-based therapeutics for targeting these hitherto incurable neurological disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJ, Holden JJ et al (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67(6):1047–1058

    CAS  PubMed  Google Scholar 

  2. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79. https://doi.org/10.1038/352077a0

    Article  PubMed  Google Scholar 

  3. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11(3):165–170. https://doi.org/10.1038/nrm2854

    CAS  Article  PubMed  Google Scholar 

  4. Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P (2012) Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 40(1):11–26. https://doi.org/10.1093/nar/gkr729

    CAS  Article  PubMed  Google Scholar 

  5. Marelli C, Maschat F (2016) The P42 peptide and peptide-based therapies for Huntington's disease. Orphanet J Rare Dis 11:24. https://doi.org/10.1186/s13023-016-0405-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122(12):4314–4322. https://doi.org/10.1172/jci63141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Rueda JR, Ballesteros J, Guillen V, Tejada MI, Sola I (2011) Folic acid for fragile X syndrome. Cochrane Database Syst Rev 5:Cd008476. https://doi.org/10.1002/14651858.CD008476.pub2

    Article  Google Scholar 

  8. Hall SS (2009) Treatments for fragile X syndrome: a closer look at the data. Dev Disabil Res Rev 15(4):353–360. https://doi.org/10.1002/ddrr.78

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wirojanan J, Jacquemont S, Diaz R, Bacalman S, Anders TF, Hagerman RJ, Goodlin-Jones BL (2009) The efficacy of melatonin for sleep problems in children with autism, fragile X syndrome, or autism and fragile X syndrome. J Clin Sleep Med 5(2):145–150

    PubMed  PubMed Central  Google Scholar 

  10. Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C et al (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123(1):378–390. https://doi.org/10.1542/peds.2008-0317

    Article  PubMed  PubMed Central  Google Scholar 

  11. Botez MI, Botez-Marquard T, Elie R, Pedraza OL, Goyette K, Lalonde R (1996) Amantadine hydrochloride treatment in heredodegenerative ataxias: a double blind study. J Neurol Neurosurg Psychiatry 61(3):259–264

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zesiewicz TA, Sullivan KL (2008) Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin Neuropharmacol 31(6):363–365. https://doi.org/10.1097/WNF.0b013e31818736a9

    Article  PubMed  Google Scholar 

  13. Zesiewicz TA, Sullivan KL, Freeman A, Juncos JL (2009) Treatment of imbalance with varenicline Chantix(R): report of a patient with fragile X tremor/ataxia syndrome. Acta Neurol Scand 119(2):135–138. https://doi.org/10.1111/j.1600-0404.2008.01070.x

    CAS  Article  PubMed  Google Scholar 

  14. Gunal DI, Afsar N, Bekiroglu N, Aktan S (2000) New alternative agents in essential tremor therapy: double-blind placebo-controlled study of alprazolam and acetazolamide. Neurol Sci 21(5):315–317

    CAS  PubMed  Google Scholar 

  15. Zesiewicz TA, Elble R, Louis ED, Hauser RA, Sullivan KL, Dewey RB Jr, Ondo WG, Gronseth GS et al (2005) Practice parameter: therapies for essential tremor: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 64(12):2008–2020. https://doi.org/10.1212/01.wnl.0000163769.28552.cd

    CAS  Article  PubMed  Google Scholar 

  16. Hagerman RJ, Hall DA, Coffey S, Leehey M, Bourgeois J, Gould J, Zhang L, Seritan A et al (2008) Treatment of fragile X-associated tremor ataxia syndrome (FXTAS) and related neurological problems. Clin Interv Aging 3(2):251–262

    PubMed  PubMed Central  Google Scholar 

  17. Disney MD, Liu B, Yang WY, Sellier C, Tran T, Charlet-Berguerand N, Childs-Disney JL (2012) A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome. ACS Chem Biol 7(10):1711–1718. https://doi.org/10.1021/cb300135h

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hagihara M, He H, Kimura M, Nakatani K (2012) A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats. Bioorg Med Chem Lett 22(5):2000–2003. https://doi.org/10.1016/j.bmcl.2012.01.030

    CAS  Article  PubMed  Google Scholar 

  19. Tran T, Childs-Disney JL, Liu B, Guan L, Rzuczek S, Disney MD (2014) Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides. ACS Chem Biol 9(4):904–912. https://doi.org/10.1021/cb400875u

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Penny LA, Dell'Aquila M, Jones MC, Bergoffen J, Cunniff C, Fryns JP, Grace E, Graham JM Jr et al (1995) Clinical and molecular characterization of patients with distal 11q deletions. Am J Hum Genet 56(3):676–683

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kobori A, Horie S, Suda H, Saito I, Nakatani K (2004) The SPR sensor detecting cytosine−cytosine mismatches. J Am Chem Soc 126(2):557–562. https://doi.org/10.1021/ja037947w

    CAS  Article  PubMed  Google Scholar 

  22. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C et al (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed Engl 51(42):10472–10498. https://doi.org/10.1002/anie.201201114

    CAS  Article  PubMed  Google Scholar 

  23. Shibata T, Nakatani K (2018) Bicyclic and tricyclic C-C mismatch-binding ligands bind to CCG trinucleotide repeat DNAs. Chem Commun (Camb) 54(51):7074–7077. https://doi.org/10.1039/c8cc02393j

    CAS  Article  Google Scholar 

  24. Erwin GS, Grieshop MP (2017) Synthetic transcription elongation factors license transcription across repressive chromatin. 358(6370):1617–1622. https://doi.org/10.1126/science.aan6414

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Polak U, Li Y, Butler JS, Napierala M (2016) Alleviating GAA repeat induced transcriptional silencing of the Friedreich’s ataxia gene during somatic cell reprogramming. Stem Cells Dev 25(23):1788–1800. https://doi.org/10.1089/scd.2016.0147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Soragni E, Miao W, Iudicello M, Jacoby D, De Mercanti S, Clerico M, Longo F, Piga A et al (2014) Epigenetic therapy for Friedreich ataxia. Ann Neurol 76(4):489–508. https://doi.org/10.1002/ana.24260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Sandi C, Pinto RM, Al-Mahdawi S, Ezzatizadeh V, Barnes G, Jones S, Rusche JR, Gottesfeld JM et al (2011) Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 42(3):496–505. https://doi.org/10.1016/j.nbd.2011.02.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Chan PK, Torres R, Yandim C, Law PP, Khadayate S, Mauri M, Grosan C, Chapman-Rothe N et al (2013) Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet 22(13):2662–2675. https://doi.org/10.1093/hmg/ddt115

    CAS  Article  PubMed  Google Scholar 

  29. Sahdeo S, Scott BD, McMackin MZ, Jasoliya M, Brown B, Wulff H, Perlman SL, Pook MA et al (2014) Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet 23(25):6848–6862. https://doi.org/10.1093/hmg/ddu408

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, Crystal RG, Aubourg P et al (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 20(5):542–547. https://doi.org/10.1038/nm.3510

    CAS  Article  PubMed  Google Scholar 

  31. Grant L, Sun J, Xu H, Subramony SH, Chaires JB, Hebert MD (2006) Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich’s ataxia. FEBS Lett 580(22):5399–5405. https://doi.org/10.1016/j.febslet.2006.09.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci U S A 103(31):11497–11502. https://doi.org/10.1073/pnas.0604939103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Novak MJ, Tabrizi SJ (2010) Huntington’s disease. BMJ (Clinical research ed) 340:c3109. https://doi.org/10.1136/bmj.c3109

    Article  Google Scholar 

  34. Marsden CD (1973) Drug treatment of diseases characterized by abnormal movements. Proc R Soc Med 66(9):871–873

    CAS  PubMed  PubMed Central  Google Scholar 

  35. (2006) Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66(3):366–372. https://doi.org/10.1212/01.wnl.0000198586.85250.13

  36. Escalar G, Majeron MA (1969) The use of butyrophenone preparations in Huntington’s chorea. Minerva Med 60(50):2494–2496

    CAS  PubMed  Google Scholar 

  37. (2013) A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord 28(10):1407–1415. https://doi.org/10.1002/mds.25362

  38. Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95(15):8892–8897

    CAS  PubMed  PubMed Central  Google Scholar 

  39. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P et al (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104(43):17204–17209. https://doi.org/10.1073/pnas.0708285104

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bürk K, Globas C, Bösch S, Gräber S, Abele M, Brice A, Dichgans J, Daum I et al (1999) Cognitive deficits in spinocerebellar ataxia 2. Brain 122(4):769–777. https://doi.org/10.1093/brain/122.4.769

    Article  PubMed  Google Scholar 

  41. Velazquez Perez L, Cruz GS, Santos Falcon N, Enrique Almaguer Mederos L, Escalona Batallan K, Rodriguez Labrada R, Paneque Herrera M, Laffita Mesa JM et al (2009) Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett 454(2):157–160. https://doi.org/10.1016/j.neulet.2009.03.015

    CAS  Article  PubMed  Google Scholar 

  42. Sacca F, Puorro G, Brunetti A, Capasso G, Cervo A, Cocozza S, de Leva M, Marsili A et al (2015) A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2. J Neurol 262(1):149–153. https://doi.org/10.1007/s00415-014-7551-0

    CAS  Article  PubMed  Google Scholar 

  43. Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, Ferraldeschi M et al (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14(10):985–991. https://doi.org/10.1016/s1474-4422(15)00201-x

    CAS  Article  PubMed  Google Scholar 

  44. Velazquez-Perez L, Rodriguez-Chanfrau J, Garcia-Rodriguez JC, Sanchez-Cruz G, Aguilera-Rodriguez R, Rodriguez-Labrada R, Rodriguez-Diaz JC, Canales-Ochoa N et al (2011) Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res 36(10):1793–1800. https://doi.org/10.1007/s11064-011-0496-0

    CAS  Article  PubMed  Google Scholar 

  45. Chen CM, Chen WL, Hung CT, Lin TH, Chao CY, Lin CH, Wu YR, Chang KH et al (2018) The indole compound NC009-1 inhibits aggregation and promotes neurite outgrowth through enhancement of HSPB1 in SCA17 cells and ameliorates the behavioral deficits in SCA17 mice. Neurotoxicology 67:259–269. https://doi.org/10.1016/j.neuro.2018.06.009

    CAS  Article  PubMed  Google Scholar 

  46. Yildirim I, Park H, Disney MD, Schatz GC (2013) A dynamic structural model of expanded RNA CAG repeats: a refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations. J Am Chem Soc 135(9):3528–3538. https://doi.org/10.1021/ja3108627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Nakatani K, Hagihara S, Goto Y, Kobori A, Hagihara M, Hayashi G, Kyo M, Nomura M et al (2005) Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats. Nat Chem Biol 1(1):39–43. https://doi.org/10.1038/nchembio708

    CAS  Article  PubMed  Google Scholar 

  48. Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ, Siboni RB, Docter AG et al (2013) Reducing levels of toxic RNA with small molecules. ACS Chem Biol 8(11):2528–2537. https://doi.org/10.1021/cb400431f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M, Southall N, Patnaik S et al (2014) Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Res 42(10):6591–6602. https://doi.org/10.1093/nar/gku275

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Serrano JF, Lee J, Daniel Curet L, Hagler LD, Bonson SE, Schuster EJ, Zimmerman SC (2019) Development of novel macrocyclic small molecules that target CTG trinucleotide repeats. Bioorg Med Chem 27(13):2978–2984. https://doi.org/10.1016/j.bmc.2019.05.022

    CAS  Article  PubMed  Google Scholar 

  51. Groh M, Lufino MMP, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 10(5):e1004318. https://doi.org/10.1371/journal.pgen.1004318

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry 6(3–4):154–157

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21(3):231–244

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lozano R, Azarang A, Wilaisakditipakorn T, Hagerman RJ (2016) Fragile X syndrome: a review of clinical management. Intractable Rare Dis Res 5(3):145–157. https://doi.org/10.5582/irdr.2016.01048

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S (2017) Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 43:39. https://doi.org/10.1186/s13052-017-0355-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Fernandez-Carvajal I, Walichiewicz P, Xiaosen X, Pan R, Hagerman PJ, Tassone F (2009) Screening for expanded alleles of the FMR1 gene in blood spots from newborn males in a Spanish population. J Mol Diagn 11(4):324–329. https://doi.org/10.2353/jmoldx.2009.080173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Moskowitz LJ, Carr EG, Durand VM (2011) Behavioral intervention for problem behavior in children with fragile X syndrome. Am J Intellect Dev Disabil 116(6):457–478. https://doi.org/10.1352/1944-7558-116.6.457

    Article  PubMed  Google Scholar 

  58. Turk J (2011) Fragile X syndrome: lifespan developmental implications for those without as well as with intellectual disability. Curr Opin Psychiatry 24(5):387–397. https://doi.org/10.1097/YCO.0b013e328349bb77

    Article  PubMed  Google Scholar 

  59. Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A, Reiss AL (2001) The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics 108(5):E88

    CAS  PubMed  Google Scholar 

  60. Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57(1):127–130

    CAS  PubMed  Google Scholar 

  61. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 66(1):6–15. https://doi.org/10.1086/302720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Tassone F, Hagerman RJ, Garcia-Arocena D, Khandjian EW, Greco CM, Hagerman PJ (2004) Intranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome. J Med Genet 41(4):e43

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brussino A, Gellera C, Saluto A, Mariotti C, Arduino C, Castellotti B, Camerlingo M, de Angelis V et al (2005) FMR1 gene premutation is a frequent genetic cause of late-onset sporadic cerebellar ataxia. Neurology 64(1):145–147. https://doi.org/10.1212/01.wnl.0000148723.37489.3f

    CAS  Article  PubMed  Google Scholar 

  64. Van Esch H, Dom R, Bex D, Salden I, Caeckebeke J, Wibail A, Borghgraef M, Legius E et al (2005) Screening for FMR-1 premutations in 122 older Flemish males presenting with ataxia. Eur J Hum Genet 13(1):121–123. https://doi.org/10.1038/sj.ejhg.5201312

    CAS  Article  PubMed  Google Scholar 

  65. Dombrowski C, Levesque S, Morel ML, Rouillard P, Morgan K, Rousseau F (2002) Premutation and intermediate-size FMR1 alleles in 10572 males from the general population: Loss of an AGG interruption is a late event in the generation of fragile X syndrome alleles. Hum Mol Genet 11(4):371–378

    CAS  PubMed  Google Scholar 

  66. Rousseau F, Rouillard P, Morel ML, Khandjian EW, Morgan K (1995) Prevalence of carriers of premutation-size alleles of the FMRI gene--and implications for the population genetics of the fragile X syndrome. Am J Hum Genet 57(5):1006–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, Zhang L, Jardini T et al (2004) Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. Jama 291(4):460–469. https://doi.org/10.1001/jama.291.4.460

    CAS  Article  PubMed  Google Scholar 

  68. Coffey SM, Cook K, Tartaglia N, Tassone F, Nguyen DV, Pan R, Bronsky HE, Yuhas J et al (2008) Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A 146a(8):1009–1016. https://doi.org/10.1002/ajmg.a.32060

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jacquemont S, Hagerman RJ, Leehey M, Grigsby J, Zhang L, Brunberg JA, Greco C, Des Portes V et al (2003) Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 72(4):869–878. https://doi.org/10.1086/374321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Kalantaridou SN, Naka KK, Papanikolaou E, Kazakos N, Kravariti M, Calis KA, Paraskevaidis EA, Sideris DA et al (2004) Impaired endothelial function in young women with premature ovarian failure: normalization with hormone therapy. J Clin Endocrinol Metab 89(8):3907–3913. https://doi.org/10.1210/jc.2004-0015

    CAS  Article  PubMed  Google Scholar 

  71. Gallagher JC (2007) Effect of early menopause on bone mineral density and fractures. Menopause (New York, NY) 14(3 Pt 2):567–571. https://doi.org/10.1097/gme.0b013e31804c793d

    Article  Google Scholar 

  72. Atsma F, Bartelink ML, Grobbee DE, van der Schouw YT (2006) Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: a meta-analysis. Menopause (New York, NY) 13(2):265–279. https://doi.org/10.1097/01.gme.0000218683.97338.ea

    Article  Google Scholar 

  73. van der Stege JG, Groen H, van Zadelhoff SJ, Lambalk CB, Braat DD, van Kasteren YM, van Santbrink EJ, Apperloo MJ et al (2008) Decreased androgen concentrations and diminished general and sexual well-being in women with premature ovarian failure. Menopause (New York, NY) 15(1):23–31

    Google Scholar 

  74. Yang WY, He F, Strack RL, Oh SY, Frazer M, Jaffrey SR, Todd PK, Disney MD (2016) Small molecule recognition and tools to study modulation of r(CGG)(exp) in fragile X-associated tremor ataxia syndrome. ACS Chem Biol 11(9):2456–2465. https://doi.org/10.1021/acschembio.6b00147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Qurashi A, Liu H, Ray L, Nelson DL, Duan R, Jin P (2012) Chemical screen reveals small molecules suppressing fragile X premutation rCGG repeat-mediated neurodegeneration in Drosophila. Hum Mol Genet 21(9):2068–2075. https://doi.org/10.1093/hmg/dds024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Kumari D, Usdin K (2016) Sustained expression of FMR1 mRNA from reactivated fragile X syndrome alleles after treatment with small molecules that prevent trimethylation of H3K27. Hum Mol Genet 25(17):3689–3698. https://doi.org/10.1093/hmg/ddw215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu X, Li J, Lv H, He H, Liu H, Zhang X, Wang S (2017) Synthesis and characterization of a bifunctional nanoprobe for CGG trinucleotide repeat detection. RSC Adv 7(57):36124–36131. https://doi.org/10.1039/C7RA05268E

    CAS  Article  Google Scholar 

  78. Verma AK, Khan E, Mishra SK, Jain N, Kumar A (2019) Piperine modulates protein mediated toxicity in fragile X-associated tremor/ataxia syndrome through interacting expanded CGG repeat (r(CGG)exp) RNA. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.9b00282

    CAS  PubMed  Google Scholar 

  79. Knight SJL, Flannery AV, Hirst MC, Campbell L, Christodoulou Z, Phelps SR, Pointon J, Middleton-Price HR et al (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in <em>FRAXE</em> mental retardation. Cell 74(1):127–134. https://doi.org/10.1016/0092-8674(93)90300-F

    CAS  Article  PubMed  Google Scholar 

  80. Jones C, Penny L, Mattina T, Yu S, Baker E, Voullaire L, Langdon WY, Sutherland GR et al (1995) Association of a chromosome deletion syndrome with a fragile site within the proto-oncogene CBL2. Nature 376(6536):145–149. https://doi.org/10.1038/376145a0

    CAS  Article  PubMed  Google Scholar 

  81. Gu Y, Shen Y, Gibbs RA, Nelson DL (1996) Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 13(1):109–113. https://doi.org/10.1038/ng0596-109

    CAS  Article  PubMed  Google Scholar 

  82. Gecz J, Gedeon AK, Sutherland GR, Mulley JC (1996) Identification of the gene FMR2, associated with FRAXE mental retardation. Nat Genet 13:105. https://doi.org/10.1038/ng0596-105

    CAS  Article  PubMed  Google Scholar 

  83. Mulley JC, Yu S, Loesch D, Hay DA, Donnelly A, Gedeon A, Carbonell P, López I et al (1995) FRAXE and mental retardation. 32. https://doi.org/10.1136/jmg.32.3.162

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Brown WT (1996) The FRAXE syndrome: Is it time for routine screening? Am J Hum Genet 58(5):903–905

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sutherland GR, Baker E (1992) Characterisation of a new rare fragile site easily confused with the fragile X. Hum Mol Genet 1(2):111–113. https://doi.org/10.1093/hmg/1.2.111

    CAS  Article  PubMed  Google Scholar 

  86. Matsumoto J, Li J, Dohno C, Nakatani K (2016) Synthesis of 1H-pyrrolo[3,2-h]quinoline-8-amine derivatives that target CTG trinucleotide repeats. Bioorg Med Chem Lett 26(15):3761–3764. https://doi.org/10.1016/j.bmcl.2016.05.062

    CAS  Article  PubMed  Google Scholar 

  87. Tseng W-H, Chang C-K, Wu P-C, Hu N-J, Lee G-H, Tzeng C-C, Neidle S, Hou M-H (2017) Induced-fit recognition of CCG trinucleotide repeats by a nickel–chromomycin complex resulting in large-scale DNA deformation. Angew Chem Int Ed 56(30):8761–8765. https://doi.org/10.1002/anie.201703989

    CAS  Article  Google Scholar 

  88. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science (New York, NY) 271(5254):1423–1427

    CAS  Google Scholar 

  89. Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746. https://doi.org/10.1093/hmg/ddm346

    CAS  Article  PubMed  Google Scholar 

  90. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich&#39;s ataxia. Nat Chem Biol 2:551. https://doi.org/10.1038/nchembio815 https://www.nature.com/articles/nchembio815#supplementary-information

    CAS  Article  PubMed  Google Scholar 

  91. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042

    CAS  Article  PubMed  Google Scholar 

  92. Harding AE (1981) Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104(3):589–620

    CAS  PubMed  Google Scholar 

  93. Delatycki MB, Corben LA (2012) Clinical features of Friedreich ataxia. J Child Neurol 27(9):1133–1137. https://doi.org/10.1177/0883073812448230

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR, Ravina B, Koeppen AH et al (2011) Mortality in Friedreich ataxia. J Neurol Sci 307(1–2):46–49. https://doi.org/10.1016/j.jns.2011.05.023

    Article  PubMed  Google Scholar 

  95. Pandolfo M (2009) Friedreich ataxia: the clinical picture. J Neurol 256(Suppl 1):3–8. https://doi.org/10.1007/s00415-009-1002-3

    Article  PubMed  Google Scholar 

  96. Li L, Shen X, Liu Z, Norrbom M, Prakash TP, O'Reilly D, Sharma VK, Damha MJ et al (2018) Activation of frataxin protein expression by antisense oligonucleotides targeting the mutant expanded repeat. Nucleic Acid Ther 28(1):23–33. https://doi.org/10.1089/nat.2017.0703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP, Chan PK, Mohammad T et al (2014) Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet (London, England) 384(9942):504–513. https://doi.org/10.1016/s0140-6736(14)60382-2

    CAS  Article  Google Scholar 

  98. Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA·TTC repeats in Friedreich&#039;s ataxia. Proc Natl Acad Sci 103(31):11497

    CAS  PubMed  Google Scholar 

  99. He H, Hagihara M, Nakatani K (2009) A small molecule affecting the replication of trinucleotide repeat d(GAA)n. Chem Eur J 15(40):10641–10648. https://doi.org/10.1002/chem.200901088

    CAS  Article  PubMed  Google Scholar 

  100. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. 18(7):671–671. https://doi.org/10.1212/wnl.18.7.671

    CAS  PubMed  Google Scholar 

  101. Ogata A, Matsuura T, Tashiro K, Moriwaka F, Demura T, Koyanagi T, Nagashima K (1994) Expression of androgen receptor in X-linked spinal and bulbar muscular atrophy and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 57(10):1274–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arbizu T, Santamaria J, Gomez JM, Quilez A, Serra JP (1983) A family with adult spinal and bulbar muscular atrophy, X-linked inheritance and associated testicular failure. J Neurol Sci 59(3):371–382

    CAS  PubMed  Google Scholar 

  103. Katsuno M, Adachi H, Doyu M, Minamiyama M, Sang C, Kobayashi Y, Inukai A, Sobue G (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med 9(6):768–773. https://doi.org/10.1038/nm878

    CAS  Article  PubMed  Google Scholar 

  104. Banno H, Katsuno M, Suzuki K, Takeuchi Y, Kawashima M, Suga N, Takamori M, Ito M et al (2009) Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 65(2):140–150. https://doi.org/10.1002/ana.21540

    CAS  Article  PubMed  Google Scholar 

  105. Katsuno M, Banno H, Suzuki K, Takeuchi Y, Kawashima M, Yabe I, Sasaki H, Aoki M et al (2010) Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 9(9):875–884. https://doi.org/10.1016/s1474-4422(10)70182-4

    CAS  Article  PubMed  Google Scholar 

  106. Fernandez-Rhodes LE, Kokkinis AD, White MJ, Watts CA, Auh S, Jeffries NO, Shrader JA, Lehky TJ et al (2011) Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. Lancet Neurol 10(2):140–147. https://doi.org/10.1016/s1474-4422(10)70321-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Lieberman AP, Yu Z, Murray S, Peralta R, Low A, Guo S, Yu XX, Cortes CJ et al (2014) Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7(3):774–784. https://doi.org/10.1016/j.celrep.2014.02.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci 23(1–2):69–96. https://doi.org/10.1385/jmn:23:1-2:069

    CAS  Article  PubMed  Google Scholar 

  109. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22. https://doi.org/10.1038/nrn1587

    CAS  Article  PubMed  Google Scholar 

  110. Agrawal N, Pallos J, Slepko N, Apostol BL, Bodai L, Chang L-W, Chiang A-S, Thompson LM et al (2005) Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci U S A 102(10):3777–3781. https://doi.org/10.1073/pnas.0500055102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Google Scholar 

  112. Evans SJ, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L (2013) Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg Psychiatry 84(10):1156–1160. https://doi.org/10.1136/jnnp-2012-304636

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kirkwood SC, Siemers E, Viken R, Hodes ME, Conneally PM, Christian JC, Foroud T (2002) Longitudinal personality changes among presymptomatic Huntington disease gene carriers. Neuropsychiatry Neuropsychol Behav Neurol 15(3):192–197

    PubMed  Google Scholar 

  114. Andrich J, Saft C, Ostholt N, Muller T (2007) Complex movement behaviour and progression of Huntington's disease. Neurosci Lett 416(3):272–274. https://doi.org/10.1016/j.neulet.2007.02.027

    CAS  Article  PubMed  Google Scholar 

  115. Kempinsky WH, Boniface WR, Morgan PP, Busch AK (1960) Reserpine in Huntington’s chorea. Neurology 10:38–42

    CAS  PubMed  Google Scholar 

  116. Lundin A, Dietrichs E, Haghighi S, Goller ML, Heiberg A, Loutfi G, Widner H, Wiktorin K et al (2010) Efficacy and safety of the dopaminergic stabilizer Pridopidine (ACR16) in patients with Huntington’s disease. Clin Neuropharmacol 33(5):260–264. https://doi.org/10.1097/WNF.0b013e3181ebb285

    CAS  Article  PubMed  Google Scholar 

  117. de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, Saft C, Magnet MK et al (2011) Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 10(12):1049–1057. https://doi.org/10.1016/s1474-4422(11)70233-2

    Article  PubMed  Google Scholar 

  118. Reilmann R (2013) The pridopidine paradox in Huntington’s disease. Mov Disord 28(10):1321–1324. https://doi.org/10.1002/mds.25559

    CAS  Article  PubMed  Google Scholar 

  119. (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57 (3):397–404

  120. Stack EC, Del Signore SJ, Luthi-Carter R, Soh BY, Goldstein DR, Matson S, Goodrich S, Markey AL et al (2007) Modulation of nucleosome dynamics in Huntington’s disease. Hum Mol Genet 16(10):1164–1175. https://doi.org/10.1093/hmg/ddm064

    CAS  Article  PubMed  Google Scholar 

  121. Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: Implications for Huntington’s disease therapy. Proc Natl Acad Sci U S A 97(12):6739–6744. https://doi.org/10.1073/pnas.110138997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Aharony I, Ehrnhoefer DE, Shruster A, Qiu X, Franciosi S, Hayden MR, Offen D (2015) A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Hum Mol Genet 24(9):2604–2614. https://doi.org/10.1093/hmg/ddv023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12(4):618–633. https://doi.org/10.1016/j.ymthe.2005.05.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74(6):1031–1044. https://doi.org/10.1016/j.neuron.2012.05.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL et al (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15(18):2743–2751. https://doi.org/10.1093/hmg/ddl210

    CAS  Article  PubMed  Google Scholar 

  126. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K et al (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6(1):14–18. https://doi.org/10.1038/ng0194-14

    CAS  Article  PubMed  Google Scholar 

  127. Takano T, Yamanouchi Y, Nagafuchi S, Yamada M (1996) Assignment of the dentatorubral and pallidoluysian atrophy (DRPLA) gene to 12p13.31 by fluorescence in situ hybridization. Genomics 32(1):171–172. https://doi.org/10.1006/geno.1996.0100

    CAS  Article  PubMed  Google Scholar 

  128. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak-Vance MA, Vance JM (1994) The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 7(4):521–524. https://doi.org/10.1038/ng0894-521

    CAS  Article  PubMed  Google Scholar 

  129. Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32(8):798–807

    CAS  PubMed  Google Scholar 

  130. Tsuji S, Onodera O, Goto J, Nishizawa M (2008) Sporadic ataxias in Japan—a population-based epidemiological study. Cerebellum (London, England) 7(2):189–197. https://doi.org/10.1007/s12311-008-0028-x

    CAS  Article  Google Scholar 

  131. Hu J, Liu J, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Swayze EE et al (2014) Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. Biochemistry 53(28):4510–4518. https://doi.org/10.1021/bi500610r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M, Xu T (2006) Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 281(18):12580–12586. https://doi.org/10.1074/jbc.M511677200

    CAS  Article  PubMed  Google Scholar 

  133. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4(3):221–226. https://doi.org/10.1038/ng0793-221

    CAS  Article  PubMed  Google Scholar 

  134. Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3(5):291–304. https://doi.org/10.1016/s1474-4422(04)00737-9

    Article  PubMed  Google Scholar 

  135. Genis D, Matilla T, Volpini V, Rosell J, Davalos A, Ferrer I, Molins A, Estivill X (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45(1):24–30

    CAS  PubMed  Google Scholar 

  136. Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L, Riess O, Laccone F et al (1998) The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121(Pt 4):589–600

    PubMed  Google Scholar 

  137. Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250(2):207–211. https://doi.org/10.1007/s00415-003-0976-5

    CAS  Article  PubMed  Google Scholar 

  138. Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, Mizusawa H, Orr HT et al (2007) Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med 4(5):e182. https://doi.org/10.1371/journal.pmed.0040182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Perez Ortiz JM, Orr HT (2018) Spinocerebellar ataxia type 1: molecular mechanisms of neurodegeneration and preclinical studies. Adv Exp Med Biol 1049:135–145. https://doi.org/10.1007/978-3-319-71779-1_6

    CAS  Article  PubMed  Google Scholar 

  140. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14(3):269–276. https://doi.org/10.1038/ng1196-269

    CAS  Article  PubMed  Google Scholar 

  141. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. https://doi.org/10.1038/nature09320

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Laffita-Mesa JM, Almaguer-Mederos LE, Kouri V, Bauer PO, Vazquez-Mojena Y, Cruz Marino T, Velazquez-Perez L (2014) Large normal alleles and SCA2 prevalence: lessons from a nationwide study and analysis of the literature. Clin Genet 86(1):96–98. https://doi.org/10.1111/cge.12221

    CAS  Article  PubMed  Google Scholar 

  143. Laffita-Mesa JM, Velazquez-Perez LC, Santos Falcon N, Cruz-Marino T, Gonzalez Zaldivar Y, Vazquez Mojena Y, Almaguer-Gotay D, Almaguer Mederos LE et al (2012) Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. Eur J Hum Genet 20(1):41–49. https://doi.org/10.1038/ejhg.2011.154

    CAS  Article  PubMed  Google Scholar 

  144. Velazquez-Perez L, Rodriguez-Labrada R, Alvarez-Gonzalez L, Aguilera-Rodriguez R, Alvarez Sanchez M, Canales-Ochoa N, Galicia Polo L, Haro-Valencia R et al (2012) Lisuride reduces involuntary periodic leg movements in spinocerebellar ataxia type 2 patients. Cerebellum (London, England) 11(4):1051–1056. https://doi.org/10.1007/s12311-012-0382-6

    Article  Google Scholar 

  145. Rodríguez-Labrada R, González Gay OT, Pérez L, Aguilera R, Canales Ochoa N, Coira Moreno Y, Figueredo Y, Medrano Montero J, Vazquez Mojena J, Laffita Mesa J, Bergado J (2014) Preliminary evaluation of the effect of Compvit-B on memory and learning processes in patients with SCA2, vol 33.

  146. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D et al (2002) Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58(5):702–708

    PubMed  Google Scholar 

  147. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8(3):221–228. https://doi.org/10.1038/ng1194-221

    CAS  Article  PubMed  Google Scholar 

  148. Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A et al (1996) Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 39(4):490–499. https://doi.org/10.1002/ana.410390411

    CAS  Article  PubMed  Google Scholar 

  149. Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R (2001) Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch Neurol 58(6):899–904

    CAS  PubMed  Google Scholar 

  150. Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, Silveira I, Maciel P et al (2001) Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet 68(2):523–528. https://doi.org/10.1086/318184

    CAS  Article  PubMed  Google Scholar 

  151. Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I et al (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27(5):478–484. https://doi.org/10.1038/nbt.1539

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U et al (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15(3):433–442. https://doi.org/10.1093/hmg/ddi458

    CAS  Article  PubMed  Google Scholar 

  153. Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, Ikeuchi T, Watanabe M et al (1997) Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 61(2):336–346. https://doi.org/10.1086/514867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69. https://doi.org/10.1038/ng0197-62

    CAS  Article  PubMed  Google Scholar 

  155. Diriong S, Lory P, Williams ME, Ellis SB, Harpold MM, Taviaux S (1995) Chromosomal localization of the human genes for alpha 1A, alpha 1B, and alpha 1E voltage-dependent Ca2+ channel subunits. Genomics 30(3):605–609. https://doi.org/10.1006/geno.1995.1284

    CAS  Article  PubMed  Google Scholar 

  156. Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM (1997) Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. 49(5):1247–1251. https://doi.org/10.1212/wnl.49.5.1247

    CAS  PubMed  Google Scholar 

  157. Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen JT, Riess O (1998) Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. Journal of neurology, neurosurgery &amp; Psychiatry 64 (1):67–73. doi:https://doi.org/10.1136/jnnp.64.1.67

    CAS  Google Scholar 

  158. Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, Blindauer KA, Labuda M et al (1998) Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51(6):1666–1671. https://doi.org/10.1212/wnl.51.6.1666

    CAS  Article  PubMed  Google Scholar 

  159. Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, Banchs I, Estivill X et al (1999) Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet 104(6):516–522

    CAS  PubMed  Google Scholar 

  160. Garcia-Planells J, Cuesta A, Vilchez JJ, Martinez F, Prieto F, Palau F (1999) Genetics of the SCA6 gene in a large family segregating an autosomal dominant “pure” cerebellar ataxia. J Med Genet 36(2):148–151

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB et al (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42(6):933–950. https://doi.org/10.1002/ana.410420616

    CAS  Article  PubMed  Google Scholar 

  162. Jen JC, Yue Q, Karrim J, Nelson SF, Baloh RW (1998) Spinocerebellar ataxia type 6 with positional vertigo and acetazolamide responsive episodic ataxia. J Neurol Neurosurg Psychiatry 65(4):565–568

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ishikawa K, Fujigasaki H, Saegusa H, Ohwada K, Fujita T, Iwamoto H, Komatsuzaki Y, Toru S et al (1999) Abundant expression and cytoplasmic aggregations of [alpha]1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum Mol Genet 8(7):1185–1193

    CAS  PubMed  Google Scholar 

  164. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378(6555):403–406. https://doi.org/10.1038/378403a0

    CAS  Article  PubMed  Google Scholar 

  165. Ishiguro T, Ishikawa K, Takahashi M, Obayashi M, Amino T, Sato N, Sakamoto M, Fujigasaki H et al (2010) The carboxy-terminal fragment of alpha(1A) calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells. Acta Neuropathol 119(4):447–464. https://doi.org/10.1007/s00401-009-0630-0

    CAS  Article  PubMed  Google Scholar 

  166. Pastor PDH, Du X, Fazal S, Davies AN, Gomez CM (2018) Targeting the CACNA1A IRES as a treatment for spinocerebellar ataxia type 6. Cerebellum 17(1):72–77. https://doi.org/10.1007/s12311-018-0917-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Okabe T, Fujisawa M, Sekiya T, Ichikawa Y, Goto J (2007) Successful treatment of spinocerebellar ataxia 6 with medicinal herbs. Geriatr Gerontol Int 7(2):195–197. https://doi.org/10.1111/j.1447-0594.2007.00378.x

    Article  Google Scholar 

  168. Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin JJ et al (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nat Genet 10:84. https://doi.org/10.1038/ng0595-84

    CAS  Article  PubMed  Google Scholar 

  169. van de Warrenburg BP, Frenken CW, Ausems MG, Kleefstra T, Sinke RJ, Knoers NV, Kremer HP (2001) Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 248(10):911–914

    PubMed  Google Scholar 

  170. Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, Forrest SM, Biros I et al (2000) Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet 95(4):351–358. https://doi.org/10.1002/1096-8628(20001211)95:4<351::AID-AJMG10>3.0.CO;2-R

    CAS  Article  PubMed  Google Scholar 

  171. Italiano D, Tarantino P, De Marco EV, Calabro RS, Bramanti P, Quattrone A, Annesi G (2012) Spinocerebellar ataxia type 7: report of a new Italian family. Intern Med (Tokyo, Japan) 51(20):2953–2955

    Google Scholar 

  172. Rub U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, Van Broeckhoven C, Bechmann I et al (2008) Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol 34(2):155–168. https://doi.org/10.1111/j.1365-2990.2007.00882.x

    CAS  Article  PubMed  Google Scholar 

  173. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124(1):1–21. https://doi.org/10.1007/s00401-012-1000-x

    CAS  Article  PubMed  Google Scholar 

  174. Scholefield J, Greenberg LJ, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJ (2009) Design of RNAi hairpins for mutation-specific silencing of ataxin-7 and correction of a SCA7 phenotype. PLoS One 4(9):e7232. https://doi.org/10.1371/journal.pone.0007232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL (2014) Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 22(9):1635–1642. https://doi.org/10.1038/mt.2014.108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. Scholefield J, Watson L, Smith D, Greenberg J, Wood MJ (2014) Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Hum Genet 22(12):1369–1375. https://doi.org/10.1038/ejhg.2014.39

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H et al (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8(11):2047–2053

    CAS  PubMed  Google Scholar 

  178. Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H (2002) Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet 114(5):578–583. https://doi.org/10.1002/ajmg.10514

    Article  PubMed  Google Scholar 

  179. Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J et al (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59(4):623–629

    CAS  PubMed  Google Scholar 

  180. Nielsen TT, Mardosiene S, Løkkegaard A, Stokholm J, Ehrenfels S, Bech S, Friberg L, Nielsen JK et al (2012) Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: a case report. BMC Neurol 12:73–73. https://doi.org/10.1186/1471-2377-12-73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. Schneider SA, van de Warrenburg BP, Hughes TD, Davis M, Sweeney M, Wood N, Quinn NP, Bhatia KP (2006) Phenotypic homogeneity of the Huntington disease-like presentation in a SCA17 family. Neurology 67(9):1701–1703. https://doi.org/10.1212/01.wnl.0000242740.01273.00

    CAS  Article  PubMed  Google Scholar 

  182. Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C et al (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124(Pt 10):1939–1947

    CAS  PubMed  Google Scholar 

  183. Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13(4):246–249. https://doi.org/10.1016/j.parkreldis.2006.04.009

    Article  PubMed  Google Scholar 

  184. Herrema H, Mikkelsen T, Robin A, LeWitt P, Sidiropoulos C (2014) SCA 17 phenotype with intermediate triplet repeat number. J Neurol Sci 345(1–2):269–270. https://doi.org/10.1016/j.jns.2014.07.041

    CAS  Article  PubMed  Google Scholar 

  185. Kung PJ, Tao YC, Hsu HC, Chen WL, Lin TH, Janreddy D, Yao CF, Chang KH et al (2014) Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models. Drug Des Dev Ther 8:1929–1939. https://doi.org/10.2147/dddt.s67376

    CAS  Article  Google Scholar 

  186. Guo J, Cui Y, Liu Q, Yang Y, Li Y, Weng L, Tang B, Jin P, Li XJ, Yang S, Li S (2018) Piperine ameliorates SCA17 neuropathology by reducing ER stress. 13 (1):4. https://doi.org/10.1186/s13024-018-0236-x

  187. Tawani A, Kumar A (2015) Structural insights reveal the dynamics of the repeating r(CAG) transcript found in Huntington’s disease (HD) and spinocerebellar ataxias (SCAs). PLoS One 10(7):e0131788. https://doi.org/10.1371/journal.pone.0131788

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Li J, Sakata A, He H, Bai LP, Murata A, Dohno C, Nakatani K (2016) Naphthyridine-benzoazaquinolone: evaluation of a tricyclic system for the binding to (CAG)n repeat DNA and RNA. Chem Asian J 11(13):1971–1981. https://doi.org/10.1002/asia.201600527

    CAS  Article  PubMed  Google Scholar 

  189. Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Tawani A, Kumar A (2019) Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington's disease (HD) and spinocerebellar ataxia (SCAs). Biochimie 163:21–32. https://doi.org/10.1016/j.biochi.2019.05.001

    CAS  Article  PubMed  Google Scholar 

  190. Fardghassemi Y, Tauffenberger A, Gosselin S, Parker JA (2017) Rescue of ATXN3 neuronal toxicity in Caenorhabditiselegans by chemical modification of endoplasmic reticulum stress 10 (12):1465–1480. https://doi.org/10.1242/dmm.029736

    CAS  Google Scholar 

  191. Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD (2012) Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS Chem Biol 7(3):496–505. https://doi.org/10.1021/cb200413a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  192. Coufal M, Maxwell MM, Russel DE, Amore AM, Altmann SM, Hollingsworth ZR, Young AB, Housman DE et al (2007) Discovery of a novel small-molecule targeting selective clearance of mutant huntingtin fragments. J Biomol Screen 12(3):351–360. https://doi.org/10.1177/1087057107299428

    CAS  Article  PubMed  Google Scholar 

  193. Matthes F, Massari S, Bochicchio A (2018) Reducing mutant huntingtin protein expression in living cells by a newly identified RNA CAG binder 9 (6):1399–1408. doi:https://doi.org/10.1021/acschemneuro.8b00027

    CAS  PubMed  Google Scholar 

  194. Barros S, Chenoweth D (2015) Triptycene-based small molecules modulate (CAG)·(CTG) repeat junctions, vol 6. https://doi.org/10.1039/C5SC01595B

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Chan HYE, Ngo JC-K, Chun-Ho W, Zhang Q, Shaohong P (2017) Small molecule inhibitors targeting cag-repeat rna toxicity in polyglutamine diseases. Google Patents

  196. Khan E, Tawani A, Mishra SK, Verma AK, Upadhyay A, Kumar M, Sandhir R, Mishra A, Kumar A (2018) Myricetin reduces toxic level of CAG repeats RNA in Huntington’s disease (HD) and spino cerebellar ataxia (SCAs) 13 (1):180–188. https://doi.org/10.1021/acschembio.7b00699

    PubMed  Google Scholar 

  197. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68(4):799–808

    CAS  PubMed  Google Scholar 

  198. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science (New York, NY) 255(5049):1256–1258

    CAS  Google Scholar 

  199. Emery AE (1991) Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord 1(1):19–29

    CAS  PubMed  Google Scholar 

  200. Suominen T, Bachinski LL, Auvinen S, Hackman P, Baggerly KA, Angelini C, Peltonen L, Krahe R et al (2011) Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet 19(7):776–782. https://doi.org/10.1038/ejhg.2011.23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  201. Thornton CA (2014) Myotonic dystrophy. Neurol Clin 32(3):705–719, viii. https://doi.org/10.1016/j.ncl.2014.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  202. Mejersjo C, Kiliaridis S (2017) Temporomandibular dysfunction in adult patients with myotonic dystrophy (DM1). J Oral Rehabil 44(10):749–755. https://doi.org/10.1111/joor.12534

    CAS  Article  PubMed  Google Scholar 

  203. Campbell C, Levin S, Siu VM, Venance S, Jacob P (2013) Congenital myotonic dystrophy: Canadian population-based surveillance study. J Pediatrics 163(1):120–125.e121-123. https://doi.org/10.1016/j.jpeds.2012.12.070

    Article  Google Scholar 

  204. LoRusso S, Weiner B, Arnold WD (2018) Myotonic dystrophies: targeting therapies for multisystem disease. Neurotherapeutics. https://doi.org/10.1007/s13311-018-00679-z

    PubMed  PubMed Central  Google Scholar 

  205. Luu LM, Nguyen L, Peng S, Lee J, Lee HY, Wong CH, Hergenrother PJ, Chan HY, Zimmerman SC (2016) A potent inhibitor of protein sequestration by expanded triplet (CUG) repeats that shows phenotypic improvements in a Drosophila model of myotonic dystrophy 11 (13):1428–1435. https://doi.org/10.1002/cmdc.201600081

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Angelbello AJ, Rzuczek SG, McKee KK, Chen JL, Olafson H, Cameron MD, Moss WN, Wang ET et al (2019) Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc Natl Acad Sci U S A 116(16):7799–7804. https://doi.org/10.1073/pnas.1901484116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  207. Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R, Disney MD (2017) Precise small-molecule recognition of a toxic CUG RNA repeat expansion 13 (2):188–193. https://doi.org/10.1038/nchembio.2251

    PubMed  PubMed Central  Google Scholar 

  208. Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP (2016) Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 3(1):42–54. https://doi.org/10.1002/acn3.271

    CAS  Article  PubMed  Google Scholar 

  209. Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 106(44):18551–18556. https://doi.org/10.1073/pnas.0903234106

    Article  PubMed  PubMed Central  Google Scholar 

  210. Siboni RB, Nakamori M, Wagner SD, Struck AJ, Coonrod LA, Harriott SA, Cass DM, Tanner MK et al (2015) Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep 13(11):2386–2394. https://doi.org/10.1016/j.celrep.2015.11.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  211. Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, Lafreniere RG, Rommens JM et al (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18(2):164–167. https://doi.org/10.1038/ng0298-164

    CAS  Article  PubMed  Google Scholar 

  212. Blumen SC, Nisipeanu P, Sadeh M, Asherov A, Tome FM, Korczyn AD (1993) Clinical features of oculopharyngeal muscular dystrophy among Bukhara Jews. Neuromuscul Disord 3(5–6):575–577. https://doi.org/10.1016/0960-8966(93)90119-5

    CAS  Article  PubMed  Google Scholar 

  213. Brais B, Rouleau GA, Bouchard JP, Fardeau M, Tome FM (1999) Oculopharyngeal muscular dystrophy. Semin Neurol 19(1):59–66. https://doi.org/10.1055/s-2008-1040826

    CAS  Article  PubMed  Google Scholar 

  214. Abu-Baker A, Rouleau GA (2007) Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Biochim Biophys Acta 1772(2):173–185. https://doi.org/10.1016/j.bbadis.2006.10.003

    CAS  Article  PubMed  Google Scholar 

  215. Bouchard JP, Brais B, Brunet D, Gould PV, Rouleau GA (1997) Recent studies on oculopharyngeal muscular dystrophy in Quebec. Neuromuscul Disord 7(Suppl 1):S22–S29. https://doi.org/10.1016/S0960-8966(97)00077-1

    Article  PubMed  Google Scholar 

  216. Chartier A, Raz V, Sterrenburg E, Verrips CT, van der Maarel SM, Simonelig M (2009) Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum Mol Genet 18(10):1849–1859. https://doi.org/10.1093/hmg/ddp101

    CAS  Article  PubMed  Google Scholar 

  217. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22. https://doi.org/10.1007/s00253-007-1142-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  218. Roovers RC, van Dongen GA, van Bergen en Henegouwen PM (2007) Nanobodies in therapeutic applications. Curr Opin Mol Ther 9(4):327–335

    CAS  PubMed  Google Scholar 

  219. Wang Q, Mosser DD, Bag J (2005) Induction of HSP70 expression and recruitment of HSC70 and HSP70 in the nucleus reduce aggregation of a polyalanine expansion mutant of PABPN1 in HeLa cells. Hum Mol Genet 14(23):3673–3684. https://doi.org/10.1093/hmg/ddi395

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

A.K.V. and E.K are thankful to DBT, New Delhi for their fellowship.

Funding

This work was supported by the funding provided by [DST/FT/LS29/2012] Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Khan, E., Bhagwat, S.R. et al. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol 57, 566–584 (2020). https://doi.org/10.1007/s12035-019-01724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01724-4

Keywords

  • Trinucleotide repeats
  • Small molecules
  • RNA
  • Therapeutics
  • Neurological disorders