Abstract
Migraine is one of the most disabling neurological diseases worldwide; however, the mechanisms underlying migraine headache are still not fully understood and current therapies for such pain are inadequate. It has been suggested that inflammation and neuroimmune modulation in the gastrointestinal tract could play an important role in the pathogenesis of migraine headache, but how gut microbiomes contribute to migraine headache is unclear. In the present study, we investigated the effect of gut microbiota dysbiosis on migraine-like pain using broad-spectrum antibiotics and germ-free (GF) mice. We observed that antibiotics treatment-prolonged nitroglycerin (NTG)-induced acute migraine-like pain in wild-type (WT) mice and the pain prolongation was completely blocked by genetic deletion of tumor necrosis factor-alpha (TNFα) or intra-spinal trigeminal nucleus caudalis (Sp5C) injection of TNFα receptor antagonist. The antibiotics treatment extended NTG-induced TNFα upregulation in the Sp5C. Probiotics administration significantly inhibited the antibiotics-produced migraine-like pain prolongation. Furthermore, NTG-induced migraine-like pain in GF mice was markedly enhanced compared to that in WT mice and gut colonization with fecal microbiota from WT mice robustly reversed microbiota deprivation-caused pain enhancement. Together, our results suggest that gut microbiota dysbiosis contributes to chronicity of migraine-like pain by upregulating TNFα level in the trigeminal nociceptive system.
This is a preview of subscription content, access via your institution.




References
Jacobs B, Dussor G (2016) Neurovascular contributions to migraine: moving beyond vasodilation. Neuroscience 338:130–144. https://doi.org/10.1016/j.neuroscience.2016.06.012
Hindiyeh N, Aurora SK (2015) What the gut can teach us about migraine. Curr Pain Headache Rep 19(7):33. https://doi.org/10.1007/s11916-015-0501-4
Camara-Lemarroy CR, Rodriguez-Gutierrez R, Monreal-Robles R, Marfil-Rivera A (2016) Gastrointestinal disorders associated with migraine: a comprehensive review. World J Gastroenterol 22(36):8149–8160. https://doi.org/10.3748/wjg.v22.i36.8149
van Hemert S, Breedveld AC, Rovers JM, Vermeiden JP, Witteman BJ, Smits MG, de Roos NM (2014) Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front Neurol 5:241. https://doi.org/10.3389/fneur.2014.00241
Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155. https://doi.org/10.1038/nn.4476
Ross SM (2017) Microbiota-gut-brain Axis, part 1: an integrated system of immunological, neural, and hormonal signals. Holist Nurs Pract 31(2):133–136. https://doi.org/10.1097/HNP.0000000000000203
Schroeder BO, Backhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22(10):1079–1089. https://doi.org/10.1038/nm.4185
Li D, Wang P, Wang P, Hu X, Chen F (2016) The gut microbiota: a treasure for human health. Biotechnol Adv 34(7):1210–1224. https://doi.org/10.1016/j.biotechadv.2016.08.003
Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20(5):508–513. https://doi.org/10.1097/QCO.0b013e3282a56a99
Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y (2012) Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 24(6):521–530, e248. https://doi.org/10.1111/j.1365-2982.2012.01891.x
Galipeau HJ, Verdu EF (2014) Gut microbes and adverse food reactions: focus on gluten related disorders. Gut Microbes 5(5):594–605. https://doi.org/10.4161/19490976.2014.969635
Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, Simren M (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006. https://doi.org/10.1136/gutjnl-2011-301501
Sheehan D, Moran C, Shanahan F (2015) The microbiota in inflammatory bowel disease. J Gastroenterol 50(5):495–507. https://doi.org/10.1007/s00535-015-1064-1
Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518. https://doi.org/10.1016/j.molmed.2014.05.002
Cryan JF, O'Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192. https://doi.org/10.1111/j.1365-2982.2010.01664.x
Gulden E, Wong FS, Wen L (2015) The gut microbiota and type 1 diabetes. Clin Immunol 159(2):143–153. https://doi.org/10.1016/j.clim.2015.05.013
Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38(1):159–165. https://doi.org/10.2337/dc14-0769
Chen X, D'Souza R, Hong ST (2013) The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 4(6):403–414. https://doi.org/10.1007/s13238-013-3017-x
Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742. https://doi.org/10.1038/nrmicro2876
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346
El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 37(5):954–967. https://doi.org/10.1016/j.clinthera.2015.03.002
Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
Sommer F, Backhed F (2013) The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. https://doi.org/10.1038/nrmicro2974
Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24(5):405–413. https://doi.org/10.1111/j.1365-2982.2012.01906.x
De Palma G, Collins SM, Bercik P (2014) The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes 5(3):419–429. https://doi.org/10.4161/gmic.29417
De Palma G, Collins SM, Bercik P, Verdu EF (2014) The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol 592(14):2989–2997. https://doi.org/10.1113/jphysiol.2014.273995
Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9. https://doi.org/10.1016/j.jpsychires.2015.02.021
Dash S, Clarke G, Berk M, Jacka FN (2015) The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry 28(1):1–6. https://doi.org/10.1097/YCO.0000000000000117
Davis DJ, Doerr HM, Grzelak AK, Busi SB, Jasarevic E, Ericsson AC, Bryda EC (2016) Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci Rep 6:33726. https://doi.org/10.1038/srep33726
Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595(2):489–503. https://doi.org/10.1113/JP273106
Inoue R, Sakaue Y, Sawai C, Sawai T, Ozeki M, Romero-Perez GA, Tsukahara T (2016) A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci Biotechnol Biochem 80(12):2450–2458. https://doi.org/10.1080/09168451.2016.1222267
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74(10):624–634. https://doi.org/10.1093/nutrit/nuw023
Scheperjans F (2016) Gut microbiota, 1013 new pieces in the Parkinson’s disease puzzle. Curr Opin Neurol 29(6):773–780. https://doi.org/10.1097/WCO.0000000000000389
Winek K, Dirnagl U, Meisel A (2016) The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 13(4):762–774. https://doi.org/10.1007/s13311-016-0475-x
Aamodt AH, Stovner LJ, Hagen K, Zwart JA (2008) Comorbidity of headache and gastrointestinal complaints. The head-HUNT study. Cephalalgia 28(2):144–151. https://doi.org/10.1111/j.1468-2982.2007.01486.x
Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, Ptacek LJ, Ahn AH (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178. https://doi.org/10.1111/j.1468-2982.2009.01864.x
Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, Szabadfi K, Tuka B et al (2012) Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis 45(1):633–644. https://doi.org/10.1016/j.nbd.2011.10.010
Tang Y, Liu S, Shu H, Xing Y, Tao F (2018) AMPA receptor GluA1 Ser831 phosphorylation is critical for nitroglycerin-induced migraine-like pain. Neuropharmacology 133:462–469. https://doi.org/10.1016/j.neuropharm.2018.02.026
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F (2018) Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 140:197–204. https://doi.org/10.1016/j.brainresbull.2018.05.008
Perini F, D'Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, Bussone G, Toso V (2005) Plasma cytokine levels in migraineurs and controls. Headache 45(7):926–931. https://doi.org/10.1111/j.1526-4610.2005.05135.x
Kang M, Mischel RA, Bhave S, Komla E, Cho A, Huang C, Dewey WL, Akbarali HI (2017) The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep 7:42658. https://doi.org/10.1038/srep42658
Kigerl KA, Hall JC, Wang L, Mo X, Yu Z, Popovich PG (2016) Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 213(12):2603–2620. https://doi.org/10.1084/jem.20151345
D'Mello C, Ronaghan N, Zaheer R, Dicay M, Le T, MacNaughton WK, Surrette MG, Swain MG (2015) Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci 35(30):10821–10830. https://doi.org/10.1523/JNEUROSCI.0575-15.2015
Packey CD, Shanahan MT, Manick S, Bower MA, Ellermann M, Tonkonogy SL, Carroll IM, Sartor RB (2013) Molecular detection of bacterial contamination in gnotobiotic rodent units. Gut Microbes 4(5):361–370. https://doi.org/10.4161/gmic.25824
Farkas S, Bolcskei K, Markovics A, Varga A, Kis-Varga A, Kormos V, Gaszner B, Horvath C et al (2016) Utility of different outcome measures for the nitroglycerin model of migraine in mice. J Pharmacol Toxicol Methods 77:33–44. https://doi.org/10.1016/j.vascn.2015.09.006
Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowiak RS, Goadsby PJ (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128(Pt 4):932–939. https://doi.org/10.1093/brain/awh416
Christiansen I, Thomsen LL, Daugaard D, Ulrich V, Olesen J (1999) Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19(7):660–667; discussion 626. https://doi.org/10.1046/j.1468-2982.1999.019007660.x
Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38(1):17–24
Olesen J (2008) The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther 120(2):157–171. https://doi.org/10.1016/j.pharmthera.2008.08.003
Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274. https://doi.org/10.1016/j.pain.2013.10.004
Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642. https://doi.org/10.1016/S1474-4422(12)70134-5
de Miguel M, Kraychete DC, Meyer Nascimento RJ (2014) Chronic pain: cytokines, lymphocytes and chemokines. Inflamm Allergy Drug Targets 13(5):339–349
Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16(11):1267–1276. https://doi.org/10.1038/nm.2234
Choi JI, Svensson CI, Koehrn FJ, Bhuskute A, Sorkin LS (2010) Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain 149(2):243–253. https://doi.org/10.1016/j.pain.2010.02.008
Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR (2011) TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 152(2):419–427. https://doi.org/10.1016/j.pain.2010.11.014
Li C, Yang Y, Liu S, Fang H, Zhang Y, Furmanski O, Skinner J, Xing Y et al (2014) Stress induces pain transition by potentiation of AMPA receptor phosphorylation. J Neurosci 34(41):13737–13746. https://doi.org/10.1523/JNEUROSCI.2130-14.2014
Liu S, Zhao Z, Guo Y, Shu H, Li C, Tang Y, Xing Y, Tao F (2018) Spinal AMPA receptor GluA1 Ser831 phosphorylation controls chronic alcohol consumption-produced prolongation of postsurgical pain. Mol Neurobiol 55(5):4090–4097. https://doi.org/10.1007/s12035-017-0639-7
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Borchardt T, Seeburg PH, Zeilhofer HU et al (2004) The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44(4):637–650. https://doi.org/10.1016/j.neuron.2004.10.029
Youn DH, Royle G, Kolaj M, Vissel B, Randic M (2008) Enhanced LTP of primary afferent neurotransmission in AMPA receptor GluR2-deficient mice. Pain 136(1–2):158–167. https://doi.org/10.1016/j.pain.2007.07.001
Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030
Funding
This work was supported by National Institutes of Health Grants R01 DE022880 (F.T.) and K02 DE023551 (F.T.) as well as Texas A&M University Interdisciplinary Faculty T3 Award (F.T.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All animal procedures were carried out in accordance with the National Institutes of Health guide for the care and use of laboratory animals and were approved by the Texas A&M University College of Dentistry Institutional Animal Care and Use Committee.
Conflict of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Supplemental Figure 1
Antagonism of TNFα receptors in the Sp5C after NTG significantly inhibits ABX treatment-prolonged migraine-like pain. Orofacial pain tests for baseline-1 and baseline-2 measurements were carried out before and after 10-day oral gavage of ABX, respectively. NTG was injected (10 mg/kg, i.p.) into WT mice after baseline-2 measurement (n = 6 per group). Bilateral intra-Sp5C injection of R-7050 (0.5 μl, 0.1 mM in 0.9% saline) was carried out on day 1 after NTG. We observed that R-7050 significantly inhibited ABX treatment-produced prolongation of NTG-induced migraine-like pain (*P < 0.05 vs. the “ABX + Vehicle” group by two-way ANOVA with the post-hoc Student-Newman-Keuls test). Data are shown as mean ± SEM. (PNG 100 kb)
Rights and permissions
About this article
Cite this article
Tang, Y., Liu, S., Shu, H. et al. Gut Microbiota Dysbiosis Enhances Migraine-Like Pain Via TNFα Upregulation. Mol Neurobiol 57, 461–468 (2020). https://doi.org/10.1007/s12035-019-01721-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-019-01721-7
Keywords
- Gut microbiota
- Migraine headache
- Tumor necrosis factor-alpha
- Spinal trigeminal nucleus caudalis