Skip to main content

Advertisement

Log in

Calcineurin-Mediated Hippocampal Inflammatory Alterations in Streptozotocin-Induced Model of Dementia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the pathogenesis of Alzheimer’s disease (AD) remains unclear, some molecular aspects that precede or accompany the deposit of β-amyloid in senile plaques attract attention, such as calcium dysregulation and neuroinflammation. It has been suggested that the Ca2+/calmodulin-dependent protein phosphatase, calcineurin (CaN), plays an important role in AD pathogenesis. We hypothesized that CaN activation is involved in the inflammatory changes observed in the streptozotocin (STZ)-induced model of AD. We investigated hippocampal inflammatory and CaN changes in Wistar rats in two moments after intracerebroventricular STZ administration: in the first week (early) and fourth week (later on). We found an early (at 1 week) and persistent (at fourth week) increment in the subunit A of CaN, as well as an increase in the major 48 kDa fragment of this subunit. Glial and inflammatory activation were confirmed by changes of IBA-1, TLR-4, glial fibrillary acidic protein (GFAP), and S100B in the hippocampus. Augmented CaN activity was accompanied by reduced phosphorylation of the pro-apoptotic protein BAD, at Ser 136. Importantly, we found an increase in the nuclear translocation of NFAT4 (more associated to astroglial reactivity) in the hippocampus at 1 and 4 weeks in this model. NFAT3 (more associated with neuronal activation) exhibited an early increase, but decreased later on. Taken together, these data contribute to the understanding of neurochemical changes in the STZ model of sporadic AD, and may explain the persistent inflammatory response in AD, which might occur via the proteolytic activation of CaN, and signaling of NFAT mediated by isoform 4, in activated astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lichtenstein MP, Carriba P, Baltrons MA, Wojciak-Stothard B, Peterson JR, García A, Galea E (2010) Secretase-independent and RhoGTPase/PAK/ERK-dependent regulation of cytoskeleton dynamics in astrocytes by NSAIDs and derivatives. J Alzheimers Dis 22(4):1135–1155. https://doi.org/10.3233/JAD-2010-101332

    Article  CAS  PubMed  Google Scholar 

  3. Osborn LM, Kamphuis W, Wadman WJ, Hol EM (2016) Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 144:121–141. https://doi.org/10.1016/j.pneurobio.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Furman JL, Norris CM (2014) Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation 11:158. https://doi.org/10.1186/s12974-014-0158-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee A, Soto C (2011) Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress. Curr Opin Cell Biol 23(2):223–230. https://doi.org/10.1016/j.ceb.2010.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25(18):4649–4658. https://doi.org/10.1523/JNEUROSCI.0365-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I et al (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29(41):12957–12969. https://doi.org/10.1523/JNEUROSCI.1064-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 27(33):8745–8756. https://doi.org/10.1523/JNEUROSCI.1002-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A 100(4):1955–1960. https://doi.org/10.1073/pnas.0136555100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80(4):1483–1521. https://doi.org/10.1152/physrev.2000.80.4.1483

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Liang S, Oda Y, Ohmori I, Nishiki T, Takei K, Matsui H, Tomizawa K (2007) Truncations of amphiphysin I by calpain inhibit vesicle endocytosis during neural hyperexcitation. EMBO J 26(12):2981–2990. https://doi.org/10.1038/sj.emboj.7601741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serrano-Pérez MC, Martín ED, Vaquero CF, Azcoitia I, Calvo S, Cano E, Tranque P (2011) Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: identification of a subpopulation of reactive astrocytes. Glia. 59(1):94–107. https://doi.org/10.1002/glia.21079

    Article  PubMed  Google Scholar 

  13. Quadrato G, Benevento M, Alber S, Jacob C, Floriddia EM, Nguyen T, Elnaggar MY, Pedroarena CM et al (2012) Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus. Proc Natl Acad Sci U S A 109(23):E1499–E1508. https://doi.org/10.1073/pnas.1202068109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 120(1):233–252. https://doi.org/10.1007/s00702-012-0877-9

    Article  CAS  Google Scholar 

  15. Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19(2):691–704. https://doi.org/10.3233/JAD-2010-1270

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues L, Dutra MF, Ilha J, Biasibetti R, Quincozes-Santos A, Leite MC, Marcuzzo S, Achaval M et al (2010) Treadmill training restores spatial cognitive deficits and neurochemical alterations in the hippocampus of rats submitted to an intracerebroventricular administration of streptozotocin. J Neural Transm (Vienna) 117(11):1295–1305. https://doi.org/10.1007/s00702-010-0501-9

    Article  CAS  Google Scholar 

  17. Dos Santos JPA, Vizuete A, Hansen F, Biasibetti R, Gonçalves CA (2018) Early and persistent O-GlcNAc protein modification in the streptozotocin model of Alzheimer’s disease. J Alzheimers Dis 61(1):237–249. https://doi.org/10.3233/JAD-170211

    Article  CAS  PubMed  Google Scholar 

  18. Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM et al (2013) Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 236(1):186–193. https://doi.org/10.1016/j.bbr.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  19. Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 282(28):20715–20727. https://doi.org/10.1074/jbc.M703224200

    Article  CAS  PubMed  Google Scholar 

  20. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356. https://doi.org/10.1016/0003-2697(77)90043-4

    Article  CAS  PubMed  Google Scholar 

  21. Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C et al (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99. https://doi.org/10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, Andreazza AC, Gottfried C et al (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286. https://doi.org/10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  23. Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ, Baxter L, Gelsthorpe C et al (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39(7):788–799. https://doi.org/10.1111/nan.12033

    Article  CAS  PubMed  Google Scholar 

  24. Reese LC, Taglialatela G (2011) A role for calcineurin in Alzheimer’s disease. Curr Neuropharmacol 9(4):685–692. https://doi.org/10.2174/157015911798376316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster JM, Carmines PK, Pollock JS (2009) PP2B-dependent NO production in the medullary thick ascending limb during diabetes. Am J Physiol Renal Physiol 297(2):F471–F480. https://doi.org/10.1152/ajprenal.90760.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Cai H, Zhu H, Toque H, Zhao N, Qiu C, Guan G, Dang Y et al (2014) Protein kinase RNA-like endoplasmic reticulum kinase (PERK)/calcineurin signaling is a novel pathway regulating intracellular calcium accumulation which might be involved in ventricular arrhythmias in diabetic cardiomyopathy. Cell Signal 26(12):2591–2600. https://doi.org/10.1016/j.cellsig.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  27. Roberts-Wilson TK, Reddy RN, Bailey JL, Zheng B, Ordas R, Gooch JL, Price SR (2010) Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. Biochim Biophys Acta 1803(8):960–967. https://doi.org/10.1016/j.bbamcr.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Wei Q (2001) Conformation changes in brain calcineurin in diabetic rats with or without treatment with vanadyl sulfate. IUBMB Life 51(6):373–376. https://doi.org/10.1080/152165401753366131

    Article  CAS  PubMed  Google Scholar 

  29. Arora RB, Kumar K, Deshmukh RR (2013) FK506 attenuates intracerebroventricular streptozotocin-induced neurotoxicity in rats. Behav Pharmacol 24(7):580–589. https://doi.org/10.1097/FBP.0b013e32836546db

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Singh N (2017) Calcineurin inhibitors improve memory loss and neuropathological changes in mouse model of dementia. Pharmacol Biochem Behav 153:147–159. https://doi.org/10.1016/j.pbb.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  31. Liu JO (2003) Endogenous protein inhibitors of calcineurin. Biochem Biophys Res Commun 311(4):1103–1109. https://doi.org/10.1016/j.bbrc.2003.10.020

    Article  CAS  PubMed  Google Scholar 

  32. Leal RB, Frizzo JK, Tramontina F, Fieuw-Makaroff S, Bobrovskaya L, Dunkley PR, Gonçalves CA (2004) S100B protein stimulates calcineurin activity. Neuroreport. 15(2):317–320. https://doi.org/10.1097/00001756-200402090-00021

    Article  CAS  PubMed  Google Scholar 

  33. Hilioti Z, Cunningham KW (2003) The RCN family of calcineurin regulators. Biochem Biophys Res Commun 311(4):1089–1093. https://doi.org/10.1016/S0006-291X(03)01515-8

    Article  CAS  PubMed  Google Scholar 

  34. Nixon RA, Saito KI, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB et al (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann N Y Acad Sci 747:77–91. https://doi.org/10.1111/j.1749-6632.1994.tb44402.x.

    Article  CAS  PubMed  Google Scholar 

  35. Saito K, Elce JS, Hamos JE, Nixon RA (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90(7):2628–2632. https://doi.org/10.1073/pnas.90.7.2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280(45):37755–37762. https://doi.org/10.1074/jbc.M507475200

    Article  CAS  PubMed  Google Scholar 

  37. Abdul MH, Baig I, Levine H 3rd, Guttmann RP, Norris CM (2011) Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell 10(1):103–113. https://doi.org/10.1111/j.1474-9726.2010.00645.x

    Article  CAS  Google Scholar 

  38. Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H et al (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30(7):2636–2649. https://doi.org/10.1523/JNEUROSCI.4456-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pleiss MM, Sompol P, Kraner SD, Abdul HM, Furman JL, Guttmann RP, Wilcock DM, Nelson PT et al (2016) Calcineurin proteolysis in astrocytes: implications for impaired synaptic function. Biochim Biophys Acta 1862(9):1521–1532. https://doi.org/10.1016/j.bbadis.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernandez AM, Jimenez S, Mecha M, Dávila D, Guaza C, Vitorica J, Torres-Aleman I (2012) Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology. Mol Psychiatry 17(7):705–718. https://doi.org/10.1038/mp.2011.128

    Article  CAS  PubMed  Google Scholar 

  41. Shi L, Zhang Z, Li L, Hölscher C (2017) A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behav Brain Res 327:65–74. https://doi.org/10.1016/j.bbr.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  42. Javed H, Vaibhav K, Ahmed ME, Khan A, Tabassum R, Islam F, Safhi MM, Islam F (2015) Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J Neurol Sci 348(1–2):51–59. https://doi.org/10.1016/j.jns.2014.10.044

    Article  CAS  PubMed  Google Scholar 

  43. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/j.neulet.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  44. Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC (2019) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M (2017) S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 794:69–76. https://doi.org/10.1016/j.ejphar.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  46. Kawamoto EM, Cutler RG, Rothman SM, Mattson MP, Camandola S (2014) TLR4-dependent metabolic changes are associated with cognitive impairment in an animal model of type 1 diabetes. Biochem Biophys Res Commun 443(2):731–737. https://doi.org/10.1016/j.bbrc.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  47. Huang HJ, Chen YH, Liang KC, Jheng YS, Jhao JJ, Su MT, Lee-Chen GJ, Hsieh-Li HM (2012) Exendin-4 protected against cognitive dysfunction in hyperglycemic mice receiving an intrahippocampal lipopolysaccharide injection. PLoS One 7(7):e39656. https://doi.org/10.1371/journal.pone.0039656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palkowitsch L, Marienfeld U, Brunner C, Eitelhuber A, Krappmann D, Marienfeld RB (2011) The Ca2+-dependent phosphatase calcineurin controls the formation of the Carma1-Bcl10-Malt1 complex during T cell receptor-induced NF-kappaB activation. J Biol Chem 286(9):7522–7534. https://doi.org/10.1074/jbc.M110.155895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bengoechea-Alonso MT, Pelacho B, Osés-Prieto JA, Santiago E, López-Moratalla N, López-Zabalza MJ (2003) Regulation of NF-κB activation by protein phosphatase 2B and NO, via protein kinase A activity, in human monocytes. Nitric Oxide 8(1):65–74

    Article  Google Scholar 

  51. Lui NP, Chen LW, Yung WH, Chan YS, Yung KK (2012) Endogenous repair by the activation of cell survival signalling cascades during the early stages of rat Parkinsonism. PLoS One 7(12):e51294. https://doi.org/10.1371/journal.pone.0051294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li JY, Furuichi Y, Matsuoka N, Mutoh S, Yanagihara T (2006) Tacrolimus (FK506) attenuates biphasic cytochrome c release and Bad phosphorylation following transient cerebral ischemia in mice. Neuroscience. 142(3):789–797. https://doi.org/10.1016/j.neuroscience.2006.06.064

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, LaFerla FM, Grundke-Iqbal I et al (2012) Brain gene expression of a sporadic (icv-STZ mouse) and a familial mouse model (3xTg-AD mouse) of Alzheimer’s disease. PLoS One 7(12):e51432. https://doi.org/10.1371/journal.pone.0051432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodrigues L, Biasibetti R, Swarowsky A, Leite MC, Quincozes-Santos A, Quilfeldt JA, Achaval M, Gonçalves CA (2009) Hippocampal alterations in rats submitted to streptozotocin-induced dementia model are prevented by aminoguanidine. J Alzheimers Dis 17(1):193–202. https://doi.org/10.3233/JAD-2009-1034

    Article  CAS  PubMed  Google Scholar 

  55. Rai S, Kamat PK, Nath C, Shukla R (2014) Glial activation and post-synaptic neurotoxicity: the key events in Streptozotocin (ICV) induced memory impairment in rats. Pharmacol Biochem Behav 117:104–117. https://doi.org/10.1016/j.pbb.2013.11.035

    Article  CAS  PubMed  Google Scholar 

  56. Pérez-Ortiz JM, Serrano-Pérez MC, Pastor MD, Martín ED, Calvo S, Rincón M, Tranque P (2008) Mechanical lesion activates newly identified NFATc1 in primary astrocytes: implication of ATP and purinergic receptors. Eur J Neurosci 27(9):2453–2465. https://doi.org/10.1111/j.1460-9568.2008.06197.x

    Article  PubMed  Google Scholar 

  57. Canellada A, Ramirez BG, Minami T, Redondo JM, Cano E (2008) Calcium/calcineurin signaling in primary cortical astrocyte cultures: Rcan1-4 and cyclooxygenase-2 as NFAT target genes. Glia. 56(7):709–722. https://doi.org/10.1002/glia.20647

    Article  PubMed  Google Scholar 

  58. Neria F, del Carmen Serrano-Perez M, Velasco P, Urso K, Tranque P, Cano E (2013) NFATc3 promotes Ca(2+)-dependent MMP3 expression in astroglial cells. Glia. 61(7):1052–1066. https://doi.org/10.1002/glia.22494

    Article  PubMed  Google Scholar 

  59. Sompol P, Furman JL, Pleiss MM, Kraner SD, Artiushin IA, Batten SR, Quintero JE, Simmerman LA et al (2017) J Neurosci 37(25):6132–6148. https://doi.org/10.1523/JNEUROSCI.0877-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, Salkovic-Petrisic M (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna). 122(4):577–592. https://doi.org/10.1007/s00702-015-1394-4

    Article  CAS  PubMed  Google Scholar 

  61. Pánico P, Salazar AM, Burns AL, Ostrosky-Wegman P (2014) Role of calpain-10 in the development of diabetes mellitus and its complications. Arch Med Res 45(2):103–115. https://doi.org/10.1016/j.arcmed.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  62. Sompol P, Norris CM (2018) Ca2+, astrocyte activation and calcineurin/NFAT signaling in age-related neurodegenerative diseases. Front Aging Neurosci 10:199. https://doi.org/10.3389/fnagi.2018.00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Council for Scientific and Technological Development (CNPq, Brazil), Ministry of Education (MEC/CAPES, Brazil), State Foundation for Scientific Research of Rio Grande do Sul (FAPERGS), and National Institute of Science and Technology for Excitotoxicity and Neuroprotection (MCT/INCTEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Almeida dos Santos.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.P.A., Vizuete, A.F. & Gonçalves, CA. Calcineurin-Mediated Hippocampal Inflammatory Alterations in Streptozotocin-Induced Model of Dementia. Mol Neurobiol 57, 502–512 (2020). https://doi.org/10.1007/s12035-019-01718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01718-2

Keywords

Navigation