Abstract
There is a critical need for new treatment approaches that can slow or prevent the progression of Alzheimer’s disease (AD). Targets that act simultaneously on multiple relevant pathways could have significant therapeutic potential. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) phosphorylates both amyloid precursor protein (APP) and tau. Dyrk1a is upregulated in post-mortem brains of AD patients, and such elevated expression is associated with cognitive deficits. We previously demonstrated that small molecule inhibition of Dyrk1 is well-tolerated and reduces amyloid plaques and pathological forms of tau in 3xTg-AD mice if administered after formation of these pathologies. However, while insoluble forms of hyperphosphorylated tau were reduced by Dyrk1 inhibition, overt neurofibrillary tangle (NFT) pathology remained unchanged. Herein, we specifically test the hypothesis that inhibition of Dyrk1 prior to NFT formation will delay the onset of pathology. 3xTg-AD mice were treated chronically, beginning at 6 months of age, prior to NFT pathology. Mice were dosed daily for either 3 or 6 months and amyloid and tau pathology were assessed. We show that chronic Dyrk1 inhibition reduces insoluble forms of amyloid beta peptides (Aβ) and hyper-phosphorylated tau long-term and that these reductions are associated with dramatic delay in the onset of both amyloid plaques and NFTs. In addition, we show that DYR219, a potent and selective small molecule Dyrk1 inhibitor, induces degradation of Dyrk1a protein, likely contributing to the efficacy of this small molecule approach in vivo. Collectively, these results suggest that therapeutic strategies targeting tau phosphorylation will show the greatest effect if administered very early in the pathogenesis of AD.
This is a preview of subscription content, access via your institution.








References
Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol 41(2–3):392–409
Buccafusco JJ (2009) Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics. 6(1):4–13
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372
Weinreb O, Mandel S, Bar-Am O, Yogev-Falach M, Avramovich-Tirosh Y, Amit T, Youdim MBH (2009) Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics. 6(1):163–174
Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H, Hashimoto R, Tanaka T et al (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 16(1):15–23
Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, Kim IS, Cheon YH et al (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J Biol Chem 282(48):34850–34857
Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J et al (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10(18):1915–1923
Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS et al (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol Dis 22(3):463–472
Ferrer I, Barrachina M, Puig B, Martinez de Lagran M, Marti E, Avila J et al (2005) Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis 20(2):392–400
Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, Ramakrishna N, Gong CX (2008) Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J 22(9):3224–3233
Azorsa DO, Robeson RH, Frost D, Meec hoovet B, Brautigam GR, Dickey C et al (2010) High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics 11:25
Altafaj X, Martin ED, Ortiz-Abalia J, Valderrama A, Lao-Peregrin C, Dierssen M et al (2013) Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 52:117–127
Pathak A, Rohilla A, Gupta T, Akhtar MJ, Haider MR, Sharma K, Haider K, Yar MS (2018) DYRK1A kinase inhibition with emphasis on neurodegeneration: a comprehensive evolution story-cum-perspective. Eur J Med Chem 158:559–592
Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, Kim MJ, Son MY et al (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem 104(5):1333–1344
Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T, Min DS, Kim J et al (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 281(44):33250–33257
Wegiel J, Dowjat K, Kaczmarski W, Kuchna I, Nowicki K, Frackowiak J, Mazur Kolecka B, Wegiel J et al (2008) The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol 116(4):391–407
Becker W, Weber Y, Wetzel K, Eirmbter K, Tejedor FJ, Joost HG (1998) Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem 273(40):25893–25902
De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farre M et al (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 58(2):278–288
Branca C, Shaw DM, Belfiore R, Gokhale V, Shaw AY, Foley C, Smith B, Hulme C et al (2017) Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell 16(5):1146–1154
Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88
Park J, Yang EJ, Yoon JH, Chung KC (2007) Dyrk1A overexpression in immortalized hippocampal cells produces the neuropathological features of Down syndrome. Mol Cell Neurosci 36(2):270–279
Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278(2):236–245
Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824
Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950
Qi J, Zhang G (2019) Proteolysis-targeting chimeras for targeting protein for degradation. Future Med Chem 11:723–741
Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, Dunckley T (2011) Beta-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One 6(5):e19264
Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070
Becker W, Sippl W (2011) Activation, regulation, and inhibition of DYRK1A. FEBS J 278(2):246–256
Sonamoto R, Kii I, Koike Y, Sumida Y, Kato-Sumida T, Okuno Y, Hosoya T, Hagiwara M (2015) Identification of a DYRK1A inhibitor that induces degradation of the target kinase using co-chaperone CDC37 fused with luciferase nanoKAZ. Sci Rep 5:12728
Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A et al (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873
Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X et al (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 355(Pt 3:609–615
Lai AY, McLaurin J (2012) Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol 7(2):165–176
Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 43(3):321–332
Beke L, Kig C, Linders JT, Boens S, Boeckx A, van Heerde E et al (2015) MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci Rep 35(6):e00267
Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. Bioessays. 40(4):e1700247
Caccamo A, Medina DX, Oddo S (2013) Glucocorticoids exacerbate cognitive deficits in TDP-25 transgenic mice via a glutathione-mediated mechanism: implications for aging, stress and TDP-43 proteinopathies. J Neurosci 33(3):906–913
Branca C, Wisely EV, Hartman LK, Caccamo A, Oddo S (2014) Administration of a selective beta2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer’s disease. Neurobiol Aging 35(12):2726–2735
Funding
This work was supported by grants R01 AG037637 to S.O., from the Alzheimer’s Drug Discovery Foundation to C.H., and from the Alzheimer’s Drug Discovery Foundation and Harrington Discovery Institute to T.D.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Animal care and treatments were in accordance with the applicable regulation of the vivarium (The Institutional Animal Care and Use Committee of the Arizona State University).
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Supplemental Table 1
PK results for DYR219. Shown are all time points and replicates detecting brain levels of DYR219 following a single IP injection at 12.5 mg/kg. Summary values are also listed beneath the table. (XLSX 13 kb)
Rights and permissions
About this article
Cite this article
Velazquez, R., Meechoovet, B., Ow, A. et al. Chronic Dyrk1 Inhibition Delays the Onset of AD-Like Pathology in 3xTg-AD Mice. Mol Neurobiol 56, 8364–8375 (2019). https://doi.org/10.1007/s12035-019-01684-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-019-01684-9