Skip to main content

Advertisement

Log in

The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer’s Disease: Critical Aspects to Unravel

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer’s disease patients and their relatives. The diagnosis of Alzheimer’s disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer’s disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer’s disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer’s disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization and Alzheimer’s Disease International (2012) Epidemiology of dementia. In: Dementia: a public health priority. World Health Organization and Alzheimer’s Disease International, United Kingdom, pp 11–12

  2. Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544

    Article  PubMed  Google Scholar 

  3. Finder VH, Glockshuber R (2007) Amyloid-beta aggregation. Neurodegener Dis 4(1):13–27. https://doi.org/10.1159/000100355

    Article  CAS  PubMed  Google Scholar 

  4. Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16(1):15–27. https://doi.org/10.3233/JAD-2009-0960

    Article  CAS  PubMed  Google Scholar 

  5. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sutphen CL, Fagan AM, Holtzman DM (2014) Progress update: fluid and imaging biomarkers in Alzheimer’s disease. Biol Psychiatry 75(7):520–526

    Article  PubMed  Google Scholar 

  7. Frost S, Martins RN, Kanagasingam Y (2010) Ocular biomarkers for early detection of Alzheimer’s disease. J Alzheimers Dis 22(1):1–16. https://doi.org/10.3233/JAD-2010-100819

    Article  PubMed  Google Scholar 

  8. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9(1):44–53. https://doi.org/10.1038/nrneurol.2012.227

    Article  CAS  PubMed  Google Scholar 

  9. Valenti DA (2010) Alzheimer’s disease: visual system review. Optometry 81(1):12–21. https://doi.org/10.1016/j.optm.2009.04.101

    Article  PubMed  Google Scholar 

  10. Cronin-Golomb A, Corkin S, Rizzo JF, Cohen J, Growdon JH, Banks KS (1991) Visual dysfunction in Alzheimer’s disease: relation to normal aging. Ann Neurol 29(1):41–52. https://doi.org/10.1002/ana.410290110

    Article  CAS  PubMed  Google Scholar 

  11. Lakshminarayanan V, Lagrave J, Kean ML, Dick M, Shankle R (1996) Vision in dementia: contrast effects. Neurol Res 18(1):9–15

    Article  CAS  PubMed  Google Scholar 

  12. Sadun AA, Borchert M, DeVita E, Hinton DR, Bassi CJ (1987) Assessment of visual impairment in patients with Alzheimer’s disease. Am J Ophthalmol 104(2):113–120

    Article  CAS  PubMed  Google Scholar 

  13. Bassi CJ, Solomon K, Young D (1993) Vision in aging and dementia. Optom Vis Sci 70(10):809–813

    Article  CAS  PubMed  Google Scholar 

  14. Polo V, Rodrigo MJ, Garcia-Martin E, Otin S, Larrosa JM, Fuertes MI, Bambo MP, Pablo LE et al (2017) Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye (Lond) 31(7):1034–1041. https://doi.org/10.1038/eye.2017.23

    Article  CAS  Google Scholar 

  15. Pablo Pinero D, Monllor B, Moncho V, de Fez D (2016) Visual function alterations in Alzheimer disease: a case report. Can J Ophthalmol 51(1):e16–e18. https://doi.org/10.1016/j.jcjo.2015.09.009

    Article  PubMed  Google Scholar 

  16. Graewe B, Lemos R, Ferreira C, Santana I, Farivar R, De Weerd P, Castelo-Branco M (2013) Impaired processing of 3D motion-defined faces in mild cognitive impairment and healthy aging: an fMRI study. Cereb Cortex 23(10):2489–2499. https://doi.org/10.1093/cercor/bhs246

    Article  PubMed  Google Scholar 

  17. Lemos R, Figueiredo P, Santana I, Simoes MR, Castelo-Branco M (2012) Temporal integration of 3D coherent motion cues defining visual objects of unknown orientation is impaired in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 28(4):885–896. https://doi.org/10.3233/JAD-2011-110719

    Article  CAS  PubMed  Google Scholar 

  18. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217. https://doi.org/10.1016/j.neuroimage.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  19. Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, Cohen RM et al (2014) Ocular changes in TgF344-AD rat model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 55(1):523–534. https://doi.org/10.1167/iovs.13-12888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dehabadi MH, Davis BM, Wong TK, Cordeiro MF (2014) Retinal manifestations of Alzheimer’s disease. Neurodegener Dis Manag 4(3):241–252. https://doi.org/10.2217/nmt.14.19

    Article  PubMed  Google Scholar 

  21. Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A et al (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2(16). https://doi.org/10.1172/jci.insight.93621

  22. Schön C, Hoffmann NA, Ochs SM, Burgold S, Filser S, Steinbach S, Seeliger MW, Arzberger T et al (2012) Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS One 7(12):e53547

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kurylo DD, Corkin S, Dolan RP, Rizzo JF 3rd, Parker SW, Growdon JH (1994) Broad-band visual capacities are not selectively impaired in Alzheimer’s disease. Neurobiol Aging 15(3):305–311

    Article  CAS  PubMed  Google Scholar 

  24. Mendola JD, Cronin-Golomb A, Corkin S, Growdon JH (1995) Prevalence of visual deficits in Alzheimer’s disease. Optom Vis Sci 72(3):155–167

    Article  CAS  PubMed  Google Scholar 

  25. Cronin-Golomb A (1995) Vision in Alzheimer’s disease. Gerontologist 35(3):370–376

    Article  CAS  PubMed  Google Scholar 

  26. Cronin-Golomb A, Corkin S, Growdon JH (1995) Visual dysfunction predicts cognitive deficits in Alzheimer’s disease. Optom Vis Sci 72(3):168–176

    Article  CAS  PubMed  Google Scholar 

  27. Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38(8):1157–1169

    Article  CAS  PubMed  Google Scholar 

  28. Done DJ, Hajilou BB (2005) Loss of high-level perceptual knowledge of object structure in DAT. Neuropsychologia 43(1):60–68. https://doi.org/10.1016/j.neuropsychologia.2004.06.004

    Article  PubMed  Google Scholar 

  29. Risacher SL, Wudunn D, Pepin SM, MaGee TR, McDonald BC, Flashman LA, Wishart HA, Pixley HS et al (2013) Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairment, and older adults with cognitive complaints. Neurobiol Aging 34(4):1133–1144. https://doi.org/10.1016/j.neurobiolaging.2012.08.007

    Article  PubMed  Google Scholar 

  30. Wood JS, Firbank MJ, Mosimann UP, Watson R, Barber R, Blamire AM, O’Brien JT (2013) Testing visual perception in dementia with Lewy bodies and Alzheimer disease. Am J Geriatr Psychiatry 21(6):501–508. https://doi.org/10.1016/j.jagp.2012.11.015

    Article  PubMed  Google Scholar 

  31. Nolan JM, Loskutova E, Howard AN, Moran R, Mulcahy R, Stack J, Bolger M, Dennison J et al (2014) Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis 42(4):1191–1202. https://doi.org/10.3233/JAD-140507

    Article  CAS  PubMed  Google Scholar 

  32. Danesh-Meyer H, Birch H, Ku J-F, Carroll S, Gamble G (2006) Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67(10):1852–1854

    Article  CAS  PubMed  Google Scholar 

  33. Nishioka C, Poh C, Sun SW (2015) Diffusion tensor imaging reveals visual pathway damage in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45(1):97–107. https://doi.org/10.3233/JAD-141239

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1991) Retinal degeneration in the macula of patients with Alzheimer’s disease. Ann N Y Acad Sci 640:44–46

    Article  CAS  PubMed  Google Scholar 

  35. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17(3):385–395

    Article  CAS  PubMed  Google Scholar 

  36. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 420(2):97–99. https://doi.org/10.1016/j.neulet.2007.02.090

    Article  CAS  PubMed  Google Scholar 

  37. Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M (2011) Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg 113(7):523–526. https://doi.org/10.1016/j.clineuro.2011.02.014

    Article  PubMed  Google Scholar 

  38. Moschos MM, Markopoulos I, Chatziralli I, Rouvas A, Papageorgiou SG, Ladas I, Vassilopoulos D (2012) Structural and functional impairment of the retina and optic nerve in Alzheimer’s disease. Curr Alzheimer Res 9(7):782–788

    Article  CAS  PubMed  Google Scholar 

  39. Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 33(1):58–61

    Article  PubMed  Google Scholar 

  40. Moreno-Ramos T, Benito-Leon J, Villarejo A, Bermejo-Pareja F (2013) Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimers Dis 34(3):659–664. https://doi.org/10.3233/JAD-121975

    Article  CAS  PubMed  Google Scholar 

  41. Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C, Staurenghi G (2013) Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54(9):5953–5958. https://doi.org/10.1167/iovs.13-12046

    Article  PubMed  Google Scholar 

  42. Ascaso FJ, Cruz N, Modrego PJ, Lopez-Anton R, Santabarbara J, Pascual LF, Lobo A, Cristobal JA (2014) Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J Neurol 261(8):1522–1530. https://doi.org/10.1007/s00415-014-7374-z

    Article  PubMed  Google Scholar 

  43. Bayhan HA, Aslan Bayhan S, Celikbilek A, Tanik N, Gurdal C (2015) Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clin Exp Ophthalmol 43(2):145–151. https://doi.org/10.1111/ceo.12386

    Article  PubMed  Google Scholar 

  44. Cheung CY, Ong YT, Hilal S, Ikram MK, Low S, Ong YL, Venketasubramanian N, Yap P et al (2015) Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 45(1):45–56. https://doi.org/10.3233/JAD-141659

    Article  CAS  PubMed  Google Scholar 

  45. Gao L, Liu Y, Li X, Bai Q, Liu P (2015) Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch Gerontol Geriatr 60(1):162–167. https://doi.org/10.1016/j.archger.2014.10.011

    Article  PubMed  Google Scholar 

  46. Bambo MP, Garcia-Martin E, Gutierrez-Ruiz F, Pinilla J, Perez-Olivan S, Larrosa JM, Polo V, Pablo L (2015) Analysis of optic disk color changes in Alzheimer’s disease: a potential new biomarker. Clin Neurol Neurosurg 132:68–73. https://doi.org/10.1016/j.clineuro.2015.02.016

    Article  PubMed  Google Scholar 

  47. Liu D, Zhang L, Li Z, Zhang X, Wu Y, Yang H, Min B, Zhang X et al (2015) Thinner changes of the retinal never fiber layer in patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol 1:14

    Article  Google Scholar 

  48. Garcia-Martin E, Bambo MP, Marques ML, Satue M, Otin S, Larrosa JM, Polo V, Pablo LE (2016) Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer’s disease. Acta Ophthalmol 94(6):e454–e459. https://doi.org/10.1111/aos.12977

    Article  PubMed  Google Scholar 

  49. Cunha LP, Lopes LC, Costa-Cunha LV, Costa CF, Pires LA, Almeida AL, Monteiro ML (2016) Macular thickness measurements with frequency domain-OCT for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer’s disease. PLoS One 11(4):e0153830. https://doi.org/10.1371/journal.pone.0153830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trebbastoni A, D’Antonio F, Bruscolini A, Marcelli M, Cecere M, Campanelli A, Imbriano L, de Lena C et al (2016) Retinal nerve fibre layer thickness changes in Alzheimer’s disease: results from a 12-month prospective case series. Neurosci Lett 629:165–170. https://doi.org/10.1016/j.neulet.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  51. Choi SH, Park SJ, Kim NR (2016) Macular ganglion cell -inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimer’s disease. PLoS One 11(9):e0162202. https://doi.org/10.1371/journal.pone.0162202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L (2017) Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 56(3):1101–1107. https://doi.org/10.3233/JAD-160886

    Article  CAS  PubMed  Google Scholar 

  53. Cunha JP, Proenca R, Dias-Santos A, Almeida R, Aguas H, Alves M, Papoila AL, Louro C et al (2017) OCT in Alzheimer’s disease: thinning of the RNFL and superior hemiretina. Graefes Arch Clin Exp Ophthalmol 255(9):1827–1835. https://doi.org/10.1007/s00417-017-3715-9

    Article  PubMed  Google Scholar 

  54. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112(10):1860–1867

    Article  CAS  PubMed  Google Scholar 

  55. Iseri PK, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26(1):18–24. https://doi.org/10.1097/01.wno.0000204645.56873.26

    Article  PubMed  Google Scholar 

  56. Coppola G, Di Renzo A, Ziccardi L, Martelli F, Fadda A, Manni G, Barboni P, Pierelli F et al (2015) Optical coherence tomography in Alzheimer’s disease: a meta-analysis. PLoS One 10(8):e0134750. https://doi.org/10.1371/journal.pone.0134750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomson KL, Yeo JM, Waddell B, Cameron JR, Pal S (2015) A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement 1(2):136–143

    Google Scholar 

  58. Méndez-Gómez JL, Rougier M-B, Tellouck L, Korobelnik J-F, Schweitzer C, Delyfer M-N, Amieva H, Dartigues J-F et al (2017) Peripapillary retinal nerve fiber layer thickness and the evolution of cognitive performance in an elderly population. Front Neurol 8:93

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lad EM, Mukherjee D, Stinnett SS, Cousins SW, Potter GG, Burke JR, Farsiu S, Whitson HE (2018) Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS One 13(2):e0192646

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2001) An evaluation of the retinal nerve fiber layer thickness by scanning laser polarimetry in individuals with dementia of the Alzheimer type. Acta Ophthalmol 79(2):187–191

    Article  CAS  Google Scholar 

  61. Kurna SA, Akar G, Altun A, Agirman Y, Gozke E, Sengor T (2014) Confocal scanning laser tomography of the optic nerve head on the patients with Alzheimer’s disease compared to glaucoma and control. Int Ophthalmol 34(6):1203–1211. https://doi.org/10.1007/s10792-014-0004-z

    Article  PubMed  Google Scholar 

  62. Pillai JA, Bermel R, Bonner-Jackson A, Rae-Grant A, Fernandez H, Bena J, Jones SE, Ehlers JP et al (2016) Retinal nerve Fiber layer thinning in Alzheimer’s disease: a case-control study in comparison to normal aging, Parkinson’s disease, and non-Alzheimer’s dementia. Am J Alzheimers Dis Other Demen 31(5):430–436. https://doi.org/10.1177/1533317515628053

    Article  PubMed  Google Scholar 

  63. den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH (2018) Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement (Amst) 10:49–55. https://doi.org/10.1016/j.dadm.2017.10.005

    Article  Google Scholar 

  64. Kergoat H, Kergoat MJ, Justino L, Robillard A, Bergman H, Chertkow H (2001) Normal optic nerve head topography in the early stages of dementia of the Alzheimer type. Dement Geriatr Cogn Disord 12(6):359–363

    Article  CAS  PubMed  Google Scholar 

  65. Strenn K, Dal-Bianco P, Weghaupt H, Koch G, Vass C, Gottlob I (1991) Pattern electroretinogram and luminance electroretinogram in Alzheimer’s disease. In: Deecke L, Dal-Bianco P (eds) Age-associated neurological diseases. Springer-Verlag, New York, pp 73–80

  66. Prager TC, Schweitzer FC, Peacock LW, Garcia CA (1993) The effect of optical defocus on the pattern electroretinogram in normal subjects and patients with Alzheimer’s disease. Am J Ophthalmol 116(3):363–369

    Article  CAS  PubMed  Google Scholar 

  67. Justino L, Kergoat M-J, Bergman H, Chertkow H, Robillard A, Kergoat H (2001) Neuroretinal function is normal in early dementia of the Alzheimer type. Neurobiol Aging 22(4):691–695

    Article  CAS  PubMed  Google Scholar 

  68. Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, Gupta V, Chung R et al (2017) Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res Ther 9(1):13. https://doi.org/10.1186/s13195-017-0239-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jentsch S, Schweitzer D, Schmidtke KU, Peters S, Dawczynski J, Bar KJ, Hammer M (2015) Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol 93(4):e241–e247. https://doi.org/10.1111/aos.12609

    Article  CAS  PubMed  Google Scholar 

  70. Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26(2):221–225. https://doi.org/10.1002/ana.410260207

    Article  CAS  PubMed  Google Scholar 

  71. Trick GL, Barris MC, Bickler-Bluth M (1989) Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer type. Ann Neurol 26(2):226–231. https://doi.org/10.1002/ana.410260208

    Article  CAS  PubMed  Google Scholar 

  72. Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K (2010) Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc Ophthalmol 121(2):111–121

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L (2010) Dysfunction of the magnocellular stream in Alzheimer’s disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 82(3):169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2002) Visual retinocortical function in dementia of the Alzheimer type. Gerontology 48(4):197–203. https://doi.org/10.1159/000058350

    Article  PubMed  Google Scholar 

  75. Uhlmann RF, Larson EB, Koepsell TD, Rees TS, Duckert LG (1991) Visual impairment and cognitive dysfunction in Alzheimer’s disease. J Gen Intern Med 6(2):126–132

    Article  CAS  PubMed  Google Scholar 

  76. Lin MY, Gutierrez PR, Stone KL, Yaffe K, Ensrud KE, Fink HA, Sarkisian CA, Coleman AL et al (2004) Vision impairment and combined vision and hearing impairment predict cognitive and functional decline in older women. J Am Geriatr Soc 52(12):1996–2002. https://doi.org/10.1111/j.1532-5415.2004.52554.x

    Article  PubMed  Google Scholar 

  77. Philpot MP, Amin D, Levy R (1990) Visual evoked potentials in Alzheimer’s disease: correlations with age and severity. Electroencephalogr Clin Neurophysiol 77(5):323–329

    Article  CAS  PubMed  Google Scholar 

  78. Rizzo M, Nawrot M (1998) Perception of movement and shape in Alzheimer’s disease. Brain 121(Pt 12):2259–2270

    Article  PubMed  Google Scholar 

  79. Wright CE, Drasdo N, Harding GF (1987) Pathology of the optic nerve and visual association areas. Information given by the flash and pattern visual evoked potential, and the temporal and spatial contrast sensitivity function. Brain 110(Pt 1):107–120

    Article  PubMed  Google Scholar 

  80. Schlotterer G, Moscovitch M, Crapper-McLachlan D (1984) Visual processing deficits as assessed by spatial frequency contrast sensitivity and backward masking in normal ageing and Alzheimer’s disease. Brain 107(Pt 1):309–325

    Article  PubMed  Google Scholar 

  81. Kiyosawa M, Bosley TM, Chawluk J, Jamieson D, Schatz NJ, Savino PJ, Sergott RC, Reivich M et al (1989) Alzheimer’s disease with prominent visual symptoms. Clinical and metabolic evaluation. Ophthalmology 96(7):1077–1085 discussion 1085-1076

    Article  CAS  PubMed  Google Scholar 

  82. Hutton JT, Morris JL, Elias JW, Poston JN (1993) Contrast sensitivity dysfunction in Alzheimer’s disease. Neurology 43(11):2328–2330

    Article  CAS  PubMed  Google Scholar 

  83. Pache M, Smeets CH, Gasio PF, Savaskan E, Flammer J, Wirz-Justice A, Kaiser HJ (2003) Colour vision deficiencies in Alzheimer’s disease. Age Ageing 32(4):422–426

    Article  PubMed  Google Scholar 

  84. Salamone G, Di Lorenzo C, Mosti S, Lupo F, Cravello L, Palmer K, Musicco M, Caltagirone C (2009) Color discrimination performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 27(6):501–507. https://doi.org/10.1159/000218366

    Article  PubMed  Google Scholar 

  85. Wijk H, Berg S, Sivik L, Steen B (1999) Colour discrimination, colour naming and colour preferences among individuals with Alzheimer’s disease. Int J Geriatr Psychiatry 14(12):1000–1005

    Article  CAS  PubMed  Google Scholar 

  86. Trick GL, Trick LR, Morris P, Wolf M (1995) Visual field loss in senile dementia of the Alzheimer’s type. Neurology 45(1):68–74

    Article  CAS  PubMed  Google Scholar 

  87. Chang LY, Lowe J, Ardiles A, Lim J, Grey AC, Robertson K, Danesh-Meyer H, Palacios AG et al (2014) Alzheimer’s disease in the human eye. Clinical tests that identify ocular and visual information processing deficit as biomarkers. Alzheimers Dement 10(2):251–261. https://doi.org/10.1016/j.jalz.2013.06.004

    Article  PubMed  Google Scholar 

  88. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  89. Jagust W (2016) Is amyloid-beta harmful to the brain? Insights from human imaging studies. Brain 139(Pt 1):23–30. https://doi.org/10.1093/brain/awv326

    Article  PubMed  Google Scholar 

  90. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732. https://doi.org/10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  91. Blanks JC, Hinton DR, Sadun AA, Miller CA (1989) Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 501(2):364–372

    Article  CAS  PubMed  Google Scholar 

  92. Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG (2014) Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol 24(1):25–32. https://doi.org/10.1111/bpa.12070

    Article  CAS  PubMed  Google Scholar 

  93. La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, Sambati L, Pan BX et al (2016) Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 79(1):90–109. https://doi.org/10.1002/ana.24548

    Article  CAS  PubMed  Google Scholar 

  94. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Obulesu M, Jhansilakshmi M (2014) Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 124(4):227–235. https://doi.org/10.3109/00207454.2013.831852

    Article  CAS  PubMed  Google Scholar 

  96. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu AC (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80

    Article  PubMed  Google Scholar 

  97. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305. https://doi.org/10.1016/j.biocel.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  98. Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23(2):177–198. https://doi.org/10.1038/mp.2017.246

    Article  CAS  PubMed  Google Scholar 

  99. Liew SC, Penfold PL, Provis JM, Madigan MC, Billson FA (1994) Modulation of MHC class II expression in the absence of lymphocytic infiltrates in Alzheimer’s retinae. J Neuropathol Exp Neurol 53(2):150–157

    Article  CAS  PubMed  Google Scholar 

  100. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419. https://doi.org/10.1016/j.nbd.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  101. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P (2015) Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 11(6):608–621 e607. https://doi.org/10.1016/j.jalz.2014.06.016

    Article  PubMed  Google Scholar 

  102. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315(8):485–487. https://doi.org/10.1056/NEJM198608213150804

    Article  CAS  PubMed  Google Scholar 

  103. Sadun AA, Bassi CJ (1990) Optic nerve damage in Alzheimer’s disease. Ophthalmology 97(1):9–17

    Article  CAS  PubMed  Google Scholar 

  104. Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T, Hsieh FY (1991) Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109(2):199–204

    Article  CAS  PubMed  Google Scholar 

  105. Guo L, Cordeiro MF (2008) Assessment of neuroprotection in the retina with DARC. Prog Brain Res 173:437–450. https://doi.org/10.1016/S0079-6123(08)01130-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yap TE, Donna P, Almonte MT, Cordeiro MF (2018) Real-time imaging of retinal ganglion cell apoptosis. Cells 7(6). https://doi.org/10.3390/cells7060060

  107. de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3(3):184–190. https://doi.org/10.1016/S1474-4422(04)00683-0

    Article  PubMed  Google Scholar 

  108. Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48(5):2285–2289. https://doi.org/10.1167/iovs.06-1029

    Article  PubMed  Google Scholar 

  109. Feke GT, Hyman BT, Stern RA, Pasquale LR (2015) Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst) 1(2):144–151. https://doi.org/10.1016/j.dadm.2015.01.004

    Article  Google Scholar 

  110. Williams MA, McGowan AJ, Cardwell CR, Cheung CY, Craig D, Passmore P, Silvestri G, Maxwell AP et al (2015) Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimers Dement (Amst) 1(2):229–235. https://doi.org/10.1016/j.dadm.2015.04.001

    Article  Google Scholar 

  111. Cheung CY, Ong YT, Ikram MK, Ong SY, Li X, Hilal S, Catindig JA, Venketasubramanian N et al (2014) Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement 10(2):135–142. https://doi.org/10.1016/j.jalz.2013.06.009

    Article  PubMed  Google Scholar 

  112. Schultz N, Byman E, Netherlands Brain B, Wennstrom M (2018) Levels of retinal IAPP are altered in Alzheimer’s disease patients and correlate with vascular changes and hippocampal IAPP levels. Neurobiol Aging 69:94–101. https://doi.org/10.1016/j.neurobiolaging.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  113. LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2(11). https://doi.org/10.1101/cshperspect.a006320

  114. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, Villemagne V, Rowe CC et al (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233. https://doi.org/10.1038/tp.2012.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Amram S, Frenkel D (2016) Animal models of Alzheimer’s disease. In: Gozes I (ed) Neuroprotection in Alzheimer’s disease. Elsevier, London, pp 31–58

  116. Elder GA, Gama Sosa MA, De Gasperi R, Dickstein DL, Hof PR (2010) Presenilin transgenic mice as models of Alzheimer’s disease. Brain Struct Funct 214(2):127–143

    Article  CAS  PubMed  Google Scholar 

  117. Buccarello L, Sclip A, Sacchi M, Castaldo AM, Bertani I, ReCecconi A, Maestroni S, Zerbini G et al (2017) The c-Jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget 8(47):83038–83051. https://doi.org/10.18632/oncotarget.19886

    Article  PubMed  PubMed Central  Google Scholar 

  118. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50(2):793–800. https://doi.org/10.1167/iovs.08-2384

    Article  PubMed  Google Scholar 

  119. Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Vander Wall R, Georgevsky D, King AE et al (2016) Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett 623:52–56

    Article  CAS  PubMed  Google Scholar 

  120. Shimazawa M, Inokuchi Y, Okuno T, Nakajima Y, Sakaguchi G, Kato A, Oku H, Sugiyama T et al (2008) Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling. J Neurochem 107(1):279–290

    Article  CAS  PubMed  Google Scholar 

  121. Joly S, Lamoureux S, Pernet V (2017) Nonamyloidogenic processing of amyloid beta precursor protein is associated with retinal function improvement in aging male APPswe/PS1DeltaE9 mice. Neurobiol Aging 53:181–191. https://doi.org/10.1016/j.neurobiolaging.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  122. Leinonen H, Lipponen A, Gurevicius K, Tanila H (2016) Normal amplitude of electroretinography and visual evoked potential responses in AβPP/PS1 mice. J Alzheimers Dis 51(1):21–26

    Article  CAS  PubMed  Google Scholar 

  123. Criscuolo C, Cerri E, Fabiani C, Capsoni S, Cattaneo A, Domenici L (2018) The retina as a window to early dysfunctions of Alzheimer’s disease following studies with a 5xFAD mouse model. Neurobiol Aging 67:181–188. https://doi.org/10.1016/j.neurobiolaging.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  124. Mazzaro N, Barini E, Spillantini MG, Goedert M, Medini P, Gasparini L (2016) Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy. J Neurosci 36(7):2086–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao L, Chen X, Tang Y, Zhao J, Li Q, Fan X, Xu H, Yin ZQ (2015) Neuroprotective effect of memantine on the retinal ganglion cells of APPswe/PS1DeltaE9 mice and its immunomodulatory mechanisms. Exp Eye Res 135:47–58. https://doi.org/10.1016/j.exer.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  126. Zhao H, Chang R, Che H, Wang J, Yang L, Fang W, Xia Y, Li N et al (2013) Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer’s disease transgenic mouse. Neurosci Lett 551:12–16. https://doi.org/10.1016/j.neulet.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  127. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49(11):5136–5143. https://doi.org/10.1167/iovs.08-1849

    Article  PubMed  Google Scholar 

  128. Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S (2018) Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis 9(6):685. https://doi.org/10.1038/s41419-018-0740-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Edwards MM, Rodriguez JJ, Gutierrez-Lanza R, Yates J, Verkhratsky A, Lutty GA (2014) Retinal macroglia changes in a triple transgenic mouse model of Alzheimer’s disease. Exp Eye Res 127:252–260. https://doi.org/10.1016/j.exer.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park SW, Kim JH, Mook-Jung I, Kim KW, Park WJ, Park KH, Kim JH (2014) Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 35(9):2013–2020. https://doi.org/10.1016/j.neurobiolaging.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  131. Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419–433. https://doi.org/10.1016/j.neurobiolaging.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  132. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175(5):2099–2110. https://doi.org/10.2353/ajpath.2009.090159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL et al (2017) Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimers Dis 55(3):1083–1099. https://doi.org/10.3233/JAD-160912

    Article  CAS  PubMed  Google Scholar 

  134. Oliveira-Souza FG, DeRamus ML, van Groen T, Lambert AE, Bolding MS, Strang CE (2017) Retinal changes in the Tg-SwDI mouse model of Alzheimer’s disease. Neuroscience 354:43–53. https://doi.org/10.1016/j.neuroscience.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  135. Moon M, Hong HS, Nam DW, Baik SH, Song H, Kook SY, Kim YS, Lee J et al (2012) Intracellular amyloid-beta accumulation in calcium-binding protein-deficient neurons leads to amyloid-beta plaque formation in animal model of Alzheimer’s disease. J Alzheimers Dis 29(3):615–628. https://doi.org/10.3233/JAD-2011-111778

    Article  CAS  PubMed  Google Scholar 

  136. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509. https://doi.org/10.1038/nrn2168

    Article  CAS  PubMed  Google Scholar 

  137. Alexandrov PN, Pogue A, Bhattacharjee S, Lukiw WJ (2011) Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport 22(12):623–627. https://doi.org/10.1097/WNR.0b013e3283497334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384. https://doi.org/10.1152/physrev.00024.2003

    Article  CAS  PubMed  Google Scholar 

  139. Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V (2018) Human tau expression does not induce mouse retina neurodegeneration, suggesting differential toxicity of tau in Brain vs. retinal neurons. Front Mol Neurosci 11:293. https://doi.org/10.3389/fnmol.2018.00293

    Article  PubMed  PubMed Central  Google Scholar 

  140. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10(2):263–276. https://doi.org/10.1111/j.1474-9726.2010.00660.x

    Article  CAS  PubMed  Google Scholar 

  141. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  142. Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY (2007) Reactive changes of retinal astrocytes and Muller glial cells in kainate-induced neuroexcitotoxicity. J Anat 210(1):54–65. https://doi.org/10.1111/j.1469-7580.2006.00671.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Niikura T, Tajima H, Kita Y (2006) Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 4(2):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Campbell M, Humphries P (2012) The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84

    Article  CAS  PubMed  Google Scholar 

  145. Chidlow G, Wood JP, Manavis J, Finnie J, Casson RJ (2017) Investigations into retinal pathology in the early stages of a mouse model of Alzheimer’s disease. J Alzheimers Dis 56(2):655–675. https://doi.org/10.3233/JAD-160823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247(9):1213–1221. https://doi.org/10.1007/s00417-009-1060-3

    Article  CAS  PubMed  Google Scholar 

  147. Li L, Luo J, Chen D, Tong JB, Zeng LP, Cao YQ, Xiang J, Luo XG et al (2016) BACE1 in the retina: a sensitive biomarker for monitoring early pathological changes in Alzheimer’s disease. Neural Regen Res 11(3):447–453. https://doi.org/10.4103/1673-5374.179057

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F et al (2017) Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):58. https://doi.org/10.1186/s13024-017-0199-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pogue AI, Dua P, Hill JM, Lukiw WJ (2015) Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem 152:206–209. https://doi.org/10.1016/j.jinorgbio.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Williams PA, Thirgood RA, Oliphant H, Frizzati A, Littlewood E, Votruba M, Good MA, Williams J et al (2013) Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(7):1799–1806. https://doi.org/10.1016/j.neurobiolaging.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  151. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Santa Casa Mantero Belard Award 2015 (MB-1049-2015); Foundation for Science and Technology, PEst (UID/NEU/04539/2013); COMPETE-FEDER (POCI-01-0145-FEDER-007440); and Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000008: BrainHealth 2020). Samuel Chiquita and Filipa I. Baptista acknowledge a fellowship from Foundation for Science and Technology, Portugal (SFRH/BD/52045/2012 and SFRH/BPD/86830/2012, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António F. Ambrósio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiquita, S., Rodrigues-Neves, A.C., Baptista, F.I. et al. The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer’s Disease: Critical Aspects to Unravel. Mol Neurobiol 56, 5416–5435 (2019). https://doi.org/10.1007/s12035-018-1461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1461-6

Keywords

Navigation