Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment

Abstract

At present, clinical interest in the plant-derived cannabinoid compound cannabidiol (CBD) is rising exponentially, since it displays multiple therapeutic properties. In addition, CBD can counteract the undesirable effects of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) that hinder clinical development of cannabis-based therapies. Despite this attention, the mechanisms of CBD action and its interaction with Δ9-THC are still not completely elucidated. Here, by combining in vivo and complementary molecular techniques, we demonstrate for the first time that CBD blunts the Δ9-THC-induced cognitive impairment in an adenosine A2A receptor (A2AR)-dependent manner. Furthermore, we reveal the existence of A2AR and cannabinoid CB1 receptor (CB1R) heteromers at the presynaptic level in CA1 neurons in the hippocampus. Interestingly, our findings support a brain region-dependent A2AR-CB1R functional interplay; indeed, CBD was not capable of modifying motor functions presumably regulated by striatal A2AR/CB1R complexes, nor anxiety responses related to other brain regions. Overall, these data provide new evidence regarding the mechanisms of action of CBD and the nature of A2AR-CB1R interactions in the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: Important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333. https://doi.org/10.1111/j.1365-2125.2012.04341.x

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Leweke FM, Mueller JK, Lange B, Rohleder C (2016) Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry 79:604–612. https://doi.org/10.1016/j.biopsych.2015.11.018

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Burstein S (2015) Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg Med Chem 23:1377–1385. https://doi.org/10.1016/j.bmc.2015.01.059

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, di Marzo V et al (2014) Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802. https://doi.org/10.1111/epi.12631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. 5.

    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, Miller I, Flamini R et al (2016) Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. The Lancet Neurology 15:270–278. https://doi.org/10.1016/S1474-4422(15)00379-8

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Russo E, Guy GW (2006) A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234–246. https://doi.org/10.1016/j.mehy.2005.08.026

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Niesink RJM, van Laar MW (2013) Does Cannabidiol protect against adverse psychological effects of THC? Front Psych 4:130. https://doi.org/10.3389/fpsyt.2013.00130

    Article  Google Scholar 

  8. 8.

    McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Δ(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172:737–753. https://doi.org/10.1111/bph.12944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. 9.

    Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623. https://doi.org/10.1038/sj.bjp.0707133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. 10.

    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805. https://doi.org/10.1111/bph.13250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. 11.

    Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S, Khan S, Khalifa Y (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 49:5526–5531. https://doi.org/10.1167/iovs.08-2196

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37:434–440. https://doi.org/10.1016/j.nbd.2009.10.023

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI et al (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur J Pharmacol 678:78–85. https://doi.org/10.1016/j.ejphar.2011.12.043

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Mecha M, Feliú A, Iñigo P et al (2013) Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors. Neurobiol Dis 59:141–150

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L et al (2014) Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J Clin Investig 124:3713–3724. https://doi.org/10.1172/JCI64628

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103:7895–7900. https://doi.org/10.1073/pnas.0511232103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. 17.

    Pandolfo P, Silveirinha V, dos Santos-Rodrigues A et al (2011) Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 655:38–45. https://doi.org/10.1016/j.ejphar.2011.01.013

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R et al (2010) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453. https://doi.org/10.1111/j.1476-5381.2010.00723.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. 19.

    Tebano MT, Martire A, Popoli P (2012) Adenosine A2A–cannabinoid CB1 receptor interaction: An integrative mechanism in striatal glutamatergic neurotransmission. Brain Res 1476:108–118. https://doi.org/10.1016/j.brainres.2012.04.051

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Chiodi V, Ferrante A, Ferraro L, Potenza RL, Armida M, Beggiato S, Pèzzola A, Bader M et al (2016) Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem 136:907–917. https://doi.org/10.1111/jnc.13421

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Moreno E, Chiarlone A, Medrano M, Puigdellívol M, Bibic L, Howell LA, Resel E, Puente N et al (2018) Singular location and signaling profile of adenosine A2A-cannabinoid CB1 receptor Heteromers in the dorsal striatum. Neuropsychopharmacology 43:964–977. https://doi.org/10.1038/npp.2017.12

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS et al (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259. https://doi.org/10.1038/sj.npp.1301375

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, Yacoubi ME, Vanderhaeghen JJ, Costentin J, Heath JK et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678. https://doi.org/10.1038/41771

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special report: The 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  PubMed  Google Scholar 

  25. 25.

    Fernández-Dueñas V, Taura JJ, Cottet M et al (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63. https://doi.org/10.1242/dmm.018143

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Taura J, Fernández-Dueñas V, Ciruela F (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17.17.1–17.17.16. https://doi.org/10.1002/0471143030.cb1717s67

    Article  Google Scholar 

  27. 27.

    Brown MW, Warburton EC, Aggleton JP (2010) Recognition memory: Material, processes, and substrates. Hippocampus 20:1228–1244. https://doi.org/10.1002/hipo.20858

    Article  PubMed  Google Scholar 

  28. 28.

    Clarke JR, Rossato JI, Monteiro S, Bevilaqua LRM, Izquierdo I, Cammarota M (2008) Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol Learn Mem 90:374–381. https://doi.org/10.1016/j.nlm.2008.04.009

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. https://doi.org/10.3791/55718

  30. 30.

    Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12:1152–1158. https://doi.org/10.1038/nn.2369

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Busquets-Garcia A, Gomis-González M, Salgado-Mendialdúa V, Galera-López L, Puighermanal E, Martín-García E, Maldonado R, Ozaita A (2018) Hippocampal protein kinase C signaling mediates the short-term memory impairment induced by Delta9-tetrahydrocannabinol. Neuropsychopharmacology 43:1021–1031. https://doi.org/10.1038/npp.2017.175

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Orru M, Bakešová J, Brugarolas M, Quiroz C, Beaumont V, Goldberg SR, Lluís C, Cortés A et al (2011) Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists. PLoS One 6:e16088. https://doi.org/10.1371/journal.pone.0016088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. 33.

    Fuxe KO, Borroto-Escuela D, Marcellino D et al (2012) GPCR Heteromers and their allosteric receptor-receptor interactions. Curr Med Chem 19:356–363. https://doi.org/10.2174/092986712803414259

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Järbe TUC, Ross T, DiPatrizio NV et al (2006) Effects of the CB1R agonist WIN-55,212-2 and the CB1R antagonists SR-141716 and AM-1387: Open-field examination in rats. Pharmacol Biochem Behav 85:243–252. https://doi.org/10.1016/j.pbb.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Aoyama S, Kase H, Borrelli E (2000) Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J Neurosci 20:5848–5852

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 107:2652–2657. https://doi.org/10.1073/pnas.0915059107

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci U S A 105:5915–5920. https://doi.org/10.1073/pnas.0801489105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. 38.

    Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA et al (2017) Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology 117:316–327. https://doi.org/10.1016/j.neuropharm.2017.02.021

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJP et al (2015) Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 20:1339–1349. https://doi.org/10.1038/mp.2014.182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. 40.

    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor. Br J Pharmacol 172:4790–4805. https://doi.org/10.1111/bph.13250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. 41.

    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304. https://doi.org/10.1124/pr.108.000992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. 42.

    Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13. https://doi.org/10.1124/jpet.106.104463

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine a<inf>1</inf>−a<inf>2A</inf>receptor heteromers. J Neurosci 26:2080–2087. https://doi.org/10.1523/JNEUROSCI.3574-05.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. 44.

    Cabello N, Gandía J, Bertarelli DCG, Watanabe M, Lluís C, Franco R, Ferré S, Luján R et al (2009) Metabotropic glutamate type 5, dopamine D<inf>2</inf>and adenosine a<inf>2a</inf>receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507. https://doi.org/10.1111/j.1471-4159.2009.06078.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. 45.

    Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, Ferenczi E, Gunaydin LA et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179–185. https://doi.org/10.1038/nature15698

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. 46.

    Blessing EM, Steenkamp MM, Manzanares J, Marmar CR (2015) Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics 12:825–836. https://doi.org/10.1007/s13311-015-0387-1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank J.A. López-Salcedo for customising the Matlab application for locomotor activity analysis and Esther Castaño and Benjamín Torrejón from the Scientific and Technical Services (CCiT) at the Bellvitge Campus of the University of Barcelona, for their technical assistance.

Funding

The authors’ work was supported by grants from CIBERNED and the Instituto de Salud Carlos III, and co-funded by the FEDER/European Regional Development Fund (ERDF)-a way to build Europe (PIE14/00034 and PI14/00757 to IF). This work was also supported by grants from MINECO-AEI/FEDER, UE (SAF2017-87349-R), the Catalan government (2017 SGR 1604), Fundació la Marató de TV3 (Grant 20152031), FWO (SBO-140028) (Francisco Ciruela) and the MINECO grant BFU2015-63769-R (Rafael Luján).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Ciruela.

Ethics declarations

The University of Barcelona Committee on Animal Use and Care approved the protocol. Animals were housed and tested in compliance with the guidelines provided by the Guide for the Care and Use of Laboratory Animals [24] and following the European Union directives (2010/63/EU). All efforts were made to minimise animal suffering and the number of animals used.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLS 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aso, E., Fernández-Dueñas, V., López-Cano, M. et al. Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment. Mol Neurobiol 56, 5382–5391 (2019). https://doi.org/10.1007/s12035-018-1456-3

Download citation

Keywords

  • Cannabidiol
  • Δ9-Tetrahydrocannabinol
  • Cannabis
  • Memory
  • Adenosine 2A receptor
  • Cannabinoid 1 receptor