Advertisement

Molecular Neurobiology

, Volume 56, Issue 8, pp 5382–5391 | Cite as

Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment

  • Ester Aso
  • Víctor Fernández-Dueñas
  • Marc López-Cano
  • Jaume Taura
  • Masahiko Watanabe
  • Isidre Ferrer
  • Rafael Luján
  • Francisco CiruelaEmail author
Article

Abstract

At present, clinical interest in the plant-derived cannabinoid compound cannabidiol (CBD) is rising exponentially, since it displays multiple therapeutic properties. In addition, CBD can counteract the undesirable effects of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) that hinder clinical development of cannabis-based therapies. Despite this attention, the mechanisms of CBD action and its interaction with Δ9-THC are still not completely elucidated. Here, by combining in vivo and complementary molecular techniques, we demonstrate for the first time that CBD blunts the Δ9-THC-induced cognitive impairment in an adenosine A2A receptor (A2AR)-dependent manner. Furthermore, we reveal the existence of A2AR and cannabinoid CB1 receptor (CB1R) heteromers at the presynaptic level in CA1 neurons in the hippocampus. Interestingly, our findings support a brain region-dependent A2AR-CB1R functional interplay; indeed, CBD was not capable of modifying motor functions presumably regulated by striatal A2AR/CB1R complexes, nor anxiety responses related to other brain regions. Overall, these data provide new evidence regarding the mechanisms of action of CBD and the nature of A2AR-CB1R interactions in the brain.

Keywords

Cannabidiol Δ9-Tetrahydrocannabinol Cannabis Memory Adenosine 2A receptor Cannabinoid 1 receptor 

Notes

Acknowledgments

We thank J.A. López-Salcedo for customising the Matlab application for locomotor activity analysis and Esther Castaño and Benjamín Torrejón from the Scientific and Technical Services (CCiT) at the Bellvitge Campus of the University of Barcelona, for their technical assistance.

Funding

The authors’ work was supported by grants from CIBERNED and the Instituto de Salud Carlos III, and co-funded by the FEDER/European Regional Development Fund (ERDF)-a way to build Europe (PIE14/00034 and PI14/00757 to IF). This work was also supported by grants from MINECO-AEI/FEDER, UE (SAF2017-87349-R), the Catalan government (2017 SGR 1604), Fundació la Marató de TV3 (Grant 20152031), FWO (SBO-140028) (Francisco Ciruela) and the MINECO grant BFU2015-63769-R (Rafael Luján).

Compliance with Ethical Standards

The University of Barcelona Committee on Animal Use and Care approved the protocol. Animals were housed and tested in compliance with the guidelines provided by the Guide for the Care and Use of Laboratory Animals [24] and following the European Union directives (2010/63/EU). All efforts were made to minimise animal suffering and the number of animals used.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1456_MOESM1_ESM.xls (34 kb)
Table S1 (XLS 34 kb)

References

  1. 1.
    Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: Important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333.  https://doi.org/10.1111/j.1365-2125.2012.04341.x CrossRefPubMedGoogle Scholar
  2. 2.
    Leweke FM, Mueller JK, Lange B, Rohleder C (2016) Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry 79:604–612.  https://doi.org/10.1016/j.biopsych.2015.11.018 CrossRefPubMedGoogle Scholar
  3. 3.
    Burstein S (2015) Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg Med Chem 23:1377–1385.  https://doi.org/10.1016/j.bmc.2015.01.059 CrossRefPubMedGoogle Scholar
  4. 4.
    Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, di Marzo V et al (2014) Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802.  https://doi.org/10.1111/epi.12631 CrossRefPubMedGoogle Scholar
  5. 5.
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, Miller I, Flamini R et al (2016) Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. The Lancet Neurology 15:270–278.  https://doi.org/10.1016/S1474-4422(15)00379-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Russo E, Guy GW (2006) A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234–246.  https://doi.org/10.1016/j.mehy.2005.08.026 CrossRefPubMedGoogle Scholar
  7. 7.
    Niesink RJM, van Laar MW (2013) Does Cannabidiol protect against adverse psychological effects of THC? Front Psych 4:130.  https://doi.org/10.3389/fpsyt.2013.00130 Google Scholar
  8. 8.
    McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Δ(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172:737–753.  https://doi.org/10.1111/bph.12944 CrossRefPubMedGoogle Scholar
  9. 9.
    Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623.  https://doi.org/10.1038/sj.bjp.0707133 CrossRefPubMedGoogle Scholar
  10. 10.
    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805.  https://doi.org/10.1111/bph.13250 CrossRefPubMedGoogle Scholar
  11. 11.
    Liou GI, Auchampach JA, Hillard CJ, Zhu G, Yousufzai B, Mian S, Khan S, Khalifa Y (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 49:5526–5531.  https://doi.org/10.1167/iovs.08-2196 CrossRefPubMedGoogle Scholar
  12. 12.
    Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37:434–440.  https://doi.org/10.1016/j.nbd.2009.10.023 CrossRefPubMedGoogle Scholar
  13. 13.
    Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI et al (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur J Pharmacol 678:78–85.  https://doi.org/10.1016/j.ejphar.2011.12.043 CrossRefPubMedGoogle Scholar
  14. 14.
    Mecha M, Feliú A, Iñigo P et al (2013) Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors. Neurobiol Dis 59:141–150CrossRefPubMedGoogle Scholar
  15. 15.
    Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L et al (2014) Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J Clin Investig 124:3713–3724.  https://doi.org/10.1172/JCI64628 CrossRefPubMedGoogle Scholar
  16. 16.
    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103:7895–7900.  https://doi.org/10.1073/pnas.0511232103 CrossRefPubMedGoogle Scholar
  17. 17.
    Pandolfo P, Silveirinha V, dos Santos-Rodrigues A et al (2011) Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 655:38–45.  https://doi.org/10.1016/j.ejphar.2011.01.013 CrossRefPubMedGoogle Scholar
  18. 18.
    Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R et al (2010) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453.  https://doi.org/10.1111/j.1476-5381.2010.00723.x CrossRefPubMedGoogle Scholar
  19. 19.
    Tebano MT, Martire A, Popoli P (2012) Adenosine A2A–cannabinoid CB1 receptor interaction: An integrative mechanism in striatal glutamatergic neurotransmission. Brain Res 1476:108–118.  https://doi.org/10.1016/j.brainres.2012.04.051 CrossRefPubMedGoogle Scholar
  20. 20.
    Chiodi V, Ferrante A, Ferraro L, Potenza RL, Armida M, Beggiato S, Pèzzola A, Bader M et al (2016) Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem 136:907–917.  https://doi.org/10.1111/jnc.13421 CrossRefPubMedGoogle Scholar
  21. 21.
    Moreno E, Chiarlone A, Medrano M, Puigdellívol M, Bibic L, Howell LA, Resel E, Puente N et al (2018) Singular location and signaling profile of adenosine A2A-cannabinoid CB1 receptor Heteromers in the dorsal striatum. Neuropsychopharmacology 43:964–977.  https://doi.org/10.1038/npp.2017.12 CrossRefPubMedGoogle Scholar
  22. 22.
    Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS et al (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259.  https://doi.org/10.1038/sj.npp.1301375 CrossRefPubMedGoogle Scholar
  23. 23.
    Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, Yacoubi ME, Vanderhaeghen JJ, Costentin J, Heath JK et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678.  https://doi.org/10.1038/41771 CrossRefPubMedGoogle Scholar
  24. 24.
    Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special report: The 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48CrossRefPubMedGoogle Scholar
  25. 25.
    Fernández-Dueñas V, Taura JJ, Cottet M et al (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63.  https://doi.org/10.1242/dmm.018143 CrossRefPubMedGoogle Scholar
  26. 26.
    Taura J, Fernández-Dueñas V, Ciruela F (2015) Visualizing G protein-coupled receptor-receptor interactions in brain using proximity ligation in situ assay. Curr Protoc Cell Biol 67:17.17.1–17.17.16.  https://doi.org/10.1002/0471143030.cb1717s67 CrossRefGoogle Scholar
  27. 27.
    Brown MW, Warburton EC, Aggleton JP (2010) Recognition memory: Material, processes, and substrates. Hippocampus 20:1228–1244.  https://doi.org/10.1002/hipo.20858 CrossRefPubMedGoogle Scholar
  28. 28.
    Clarke JR, Rossato JI, Monteiro S, Bevilaqua LRM, Izquierdo I, Cammarota M (2008) Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol Learn Mem 90:374–381.  https://doi.org/10.1016/j.nlm.2008.04.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp.  https://doi.org/10.3791/55718
  30. 30.
    Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12:1152–1158.  https://doi.org/10.1038/nn.2369 CrossRefPubMedGoogle Scholar
  31. 31.
    Busquets-Garcia A, Gomis-González M, Salgado-Mendialdúa V, Galera-López L, Puighermanal E, Martín-García E, Maldonado R, Ozaita A (2018) Hippocampal protein kinase C signaling mediates the short-term memory impairment induced by Delta9-tetrahydrocannabinol. Neuropsychopharmacology 43:1021–1031.  https://doi.org/10.1038/npp.2017.175 CrossRefPubMedGoogle Scholar
  32. 32.
    Orru M, Bakešová J, Brugarolas M, Quiroz C, Beaumont V, Goldberg SR, Lluís C, Cortés A et al (2011) Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists. PLoS One 6:e16088.  https://doi.org/10.1371/journal.pone.0016088 CrossRefPubMedGoogle Scholar
  33. 33.
    Fuxe KO, Borroto-Escuela D, Marcellino D et al (2012) GPCR Heteromers and their allosteric receptor-receptor interactions. Curr Med Chem 19:356–363.  https://doi.org/10.2174/092986712803414259 CrossRefPubMedGoogle Scholar
  34. 34.
    Järbe TUC, Ross T, DiPatrizio NV et al (2006) Effects of the CB1R agonist WIN-55,212-2 and the CB1R antagonists SR-141716 and AM-1387: Open-field examination in rats. Pharmacol Biochem Behav 85:243–252.  https://doi.org/10.1016/j.pbb.2006.08.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Aoyama S, Kase H, Borrelli E (2000) Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J Neurosci 20:5848–5852CrossRefPubMedGoogle Scholar
  36. 36.
    Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 107:2652–2657.  https://doi.org/10.1073/pnas.0915059107 CrossRefPubMedGoogle Scholar
  37. 37.
    Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci U S A 105:5915–5920.  https://doi.org/10.1073/pnas.0801489105 CrossRefPubMedGoogle Scholar
  38. 38.
    Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA et al (2017) Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology 117:316–327.  https://doi.org/10.1016/j.neuropharm.2017.02.021 CrossRefPubMedGoogle Scholar
  39. 39.
    Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJP et al (2015) Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 20:1339–1349.  https://doi.org/10.1038/mp.2014.182 CrossRefPubMedGoogle Scholar
  40. 40.
    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor. Br J Pharmacol 172:4790–4805.  https://doi.org/10.1111/bph.13250 CrossRefPubMedGoogle Scholar
  41. 41.
    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304.  https://doi.org/10.1124/pr.108.000992 CrossRefPubMedGoogle Scholar
  42. 42.
    Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13.  https://doi.org/10.1124/jpet.106.104463 CrossRefPubMedGoogle Scholar
  43. 43.
    Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine a<inf>1</inf>−a<inf>2A</inf>receptor heteromers. J Neurosci 26:2080–2087.  https://doi.org/10.1523/JNEUROSCI.3574-05.2006 CrossRefPubMedGoogle Scholar
  44. 44.
    Cabello N, Gandía J, Bertarelli DCG, Watanabe M, Lluís C, Franco R, Ferré S, Luján R et al (2009) Metabotropic glutamate type 5, dopamine D<inf>2</inf>and adenosine a<inf>2a</inf>receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507.  https://doi.org/10.1111/j.1471-4159.2009.06078.x CrossRefPubMedGoogle Scholar
  45. 45.
    Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, Ferenczi E, Gunaydin LA et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179–185.  https://doi.org/10.1038/nature15698 CrossRefPubMedGoogle Scholar
  46. 46.
    Blessing EM, Steenkamp MM, Manzanares J, Marmar CR (2015) Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics 12:825–836.  https://doi.org/10.1007/s13311-015-0387-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la SalutIDIBELL-Universitat de BarcelonaL’Hospitalet de LlobregatSpain
  2. 2.Universitat de BarcelonaInstitut de NeurociènciesBarcelonaSpain
  3. 3.Department of AnatomyHokkaido University School of MedicineSapporoJapan
  4. 4.CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasInstituto Carlos IIIMadridSpain
  5. 5.Unitat de Anatomia Patològica, Departament de Patologia i Terapèutica Experimental, Facultat de MedicinaIDIBELL-Universitat de BarcelonaL’Hospitalet de LlobregatSpain
  6. 6.Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla-La ManchaAlbaceteSpain

Personalised recommendations