Advertisement

Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles

  • Angeles Vinuesa
  • Melisa Bentivegna
  • Gastón Calfa
  • Fabia Filipello
  • Carlos Pomilio
  • María Marta Bonaventura
  • Victoria Lux-Lantos
  • María Eugenia Matzkin
  • Amal Gregosa
  • Jessica Presa
  • Michela Matteoli
  • Juan Beauquis
  • Flavia Saravia
Article
  • 223 Downloads

Abstract

Adolescence is a transitional period from childhood to adulthood characterized by puberty and brain maturation involving behavioral changes and environmental vulnerability. Diet is one of the factors affecting brain health, potentially leading to long-lasting effects. Hence, we studied the impact of early exposure (P21-60) to a high-fat diet (HFD) on mouse hippocampus, analyzing inflammation, adult neurogenesis, dendritic spine plasticity, and spatial memory. Glycemia and seric pro-inflammatory IL1β were higher in HFD mice without differences on body weight. In the HFD hippocampus, neuroinflammation was evidenced by Iba1+ cells reactivity together with a higher expression of TNFα and IL1β while the neurogenic capability in the dentate gyrus was strongly reduced. We found a predominance of immature Dil-labeled dendritic spines from CA1 neurons along with diminished levels of the scaffold protein Shank2, suggesting a defective connectivity. Moreover, the HFD group exhibited spatial memory alterations. To elucidate whether microglia could be mediating HFD-associated neuronal changes, the lipotoxic context was emulated by incubating primary microglia with palmitate, a saturated fatty acid present in HFD. Palmitate induced a pro-inflammatory profile as shown by secreted cytokine levels. The isolated exosome fraction from palmitate-stimulated microglia induced an immature dendritic spine phenotype in primary GFP+ hippocampal neurons, in line with the in vivo findings. These results provide novel data concerning microglia to neuron communication and highlight that fat excess during a short and early period of life could negatively impact on cognition and synaptic plasticity in a neuroinflammatory context, where microglia-derived exosomes could be implicated.

Graphical Abstract

Keywords

Hippocampus Dendritic spines High-fat diet Microglia Exosomes Adolescence 

Notes

Acknowledgements

The authors thank our institutions, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), and the National Research Council (CONICET), for the invaluable academic and scientific support. In addition, the authors deeply thank the Williams Foundation for their support and also Soledad Rossi and Monica Frungieri for their kind collaboration and RT PCR expertise, Monica Kotler and team for BV2 cells and advices, Maria Luisa Malosio for help in palmitate preparation setting, and Chiara Elia for EVs isolation expertise and her kind collaboration. We want to especially thank the personnel of the animal facility at IBYME for their help with animal care. This work was funded by Grants to JB PICT 2016-1572 and Roemmers Foundation and to FS PICT 2014-1168 2016-1046 from ANPCyT and PIP from CONICET and was also supported by Cariplo 2015–0594 and Fondazione Pisa to MM. AV was a recipient of a BecAr, Argentina fellowship, to spend 6 months in Milan, Italy, in Matteoli’s laboratory. AV is a postdoctoral fellow from CONICET; GC, MMB, VLL, MEM. JB, and FS are career investigators from CONICET. CP is a doctoral fellow from CONICET. AG and JP are doctoral fellows from ANPCyT.

Compliance with Ethical Standards

All animal experiments followed the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Ethical Committee of the Institute of Biology and Experimental Medicine.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Patton GC, Olsson CA, Skirbekk V, Saffery R, Wlodek ME, Azzopardi PS, Stonawski M, Rasmussen B et al (2018) Adolescence and the next generation. Nature 554(7693):458–466. http://sci-hub.tw/10.1038/nature25759 PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Casey BJ, Duhoux S, Malter Cohen M (2010) Adolescence: what do transmission, transition, and translation have to do with it? Neuron 67(5):749–760. http://sci-hub.tw/10.1016/j.neuron.2010.08.033 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Walker DM, Bell MR, Flores C, Gulley JM, Willing J, Paul MJ (2017) Adolescence and reward: making sense of neural and behavioral changes amid the chaos. J Neurosci 37(45):10855–10866. http://sci-hub.tw/10.1523/JNEUROSCI.1834-17.2017 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Shin SY, Han SH, Woo RS, Jang SH, Min SS (2016) Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience 316:221–231. http://sci-hub.tw/10.1016/j.neuroscience.2015.12.041 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Spear LP (2013) Adolescent neurodevelopment. J Adolesc Health 52(2 Suppl 2):S7–S13. http://sci-hub.tw/10.1016/j.jadohealth.2012.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Venn AJ, Thomson RJ, Schmidt MD, Cleland VJ, Curry BA, Gennat HC, Dwyer T (2007) Overweight and obesity from childhood to adulthood: a follow-up of participants in the 1985 Australian Schools Health and Fitness Survey. Med J Aust 186(9):458–460PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dey A, Hao S, Wosiski-Kuhn M, Stranahan AM (2017) Glucocorticoid-mediated activation of GSK3beta promotes tau phosphorylation and impairs memory in type 2 diabetes. Neurobiol Aging 57:75–83. http://sci-hub.tw/10.1016/j.neurobiolaging.2017.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76(18):1568–1574PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93(4):546–553. http://sci-hub.tw/10.1016/j.nlm.2010.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71(14):1057–1064. http://sci-hub.tw/10.1212/01.wnl.0000306313.89165.ef PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Vinuesa A, Pomilio C, Menafra M, Bonaventura MM, Garay L, Mercogliano MF, Schillaci R, Lux Lantos V et al (2016) Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity. Psychoneuroendocrinology 72:22–33. http://sci-hub.tw/10.1016/j.psyneuen.2016.06.004 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. http://sci-hub.tw/10.1126/science.1202529 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kramer-Albers EM, Hill AF (2016) Extracellular vesicles: interneural shuttles of complex messages. Curr Opin Neurobiol 39:101–107. http://sci-hub.tw/10.1016/j.conb.2016.04.016 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Budnik V, Ruiz-Canada C, Wendler F (2016) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17(3):160–172. http://sci-hub.tw/10.1038/nrn.2015.29 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rajendran L, Bali J, Barr MM, Court FA, Kramer-Albers EM, Picou F, Raposo G, van der Vos KE et al (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34(46):15482–15489. http://sci-hub.tw/10.1523/JNEUROSCI.3258-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228. http://sci-hub.tw/10.3389/fphys.2012.00228 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. http://sci-hub.tw/10.1146/annurev-cellbio-101512-122326 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. http://sci-hub.tw/10.1038/nri2567 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. http://sci-hub.tw/10.1016/j.tcb.2008.11.003 PubMedCrossRefGoogle Scholar
  21. 21.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. http://sci-hub.tw/10.1126/science.1153124 PubMedCrossRefGoogle Scholar
  22. 22.
    Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937. http://sci-hub.tw/10.1111/j.1600-0854.2009.00920.x PubMedCrossRefGoogle Scholar
  23. 23.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. http://sci-hub.tw/10.1038/nrm.2017.125
  24. 24.
    Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175(4):2237–2243PubMedCrossRefGoogle Scholar
  25. 25.
    Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36(3):301–312. http://sci-hub.tw/10.1007/s10571-016-0366-z PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N et al (2009) Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost 7(6):1019–1028. http://sci-hub.tw/10.1111/j.1538-7836.2009.03434.x PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Turola E, Furlan R, Bianco F, Matteoli M, Verderio C (2012) Microglial microvesicle secretion and intercellular signaling. Front Physiol 3:149. http://sci-hub.tw/10.3389/fphys.2012.00149 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bahrini I, Song JH, Diez D, Hanayama R (2015) Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep 5:7989. http://sci-hub.tw/10.1038/srep07989 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182. http://sci-hub.tw/10.3389/fncel.2013.00182 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Joshi P, Benussi L, Furlan R, Ghidoni R, Verderio C (2015) Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on abeta-vesicle interaction. Int J Mol Sci 16(3):4800–4813. http://sci-hub.tw/10.3390/ijms16034800 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, Farghaian H, Cole AR et al (2014) Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes. Hum Mol Genet 23(11):2816–2833. http://sci-hub.tw/10.1093/hmg/ddu099 PubMedCrossRefGoogle Scholar
  32. 32.
    Paolicelli RC, Bergamini G, Rajendran L (2018) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience. http://sci-hub.tw/10.1016/j.neuroscience.2018.04.003
  33. 33.
    Yang Y, Boza-Serrano A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T (2018) Inflammation leads to distinct populations of extracellular vesicles from microglia. J Neuroinflammation 15(1):168. http://sci-hub.tw/10.1186/s12974-018-1204-7 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, Riganti L, Corradini I et al (2012) Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 72(4):610–624. http://sci-hub.tw/10.1002/ana.23627 PubMedCrossRefGoogle Scholar
  35. 35.
    Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174(11):7268–7277PubMedCrossRefGoogle Scholar
  36. 36.
    Takenouchi T, Tsukimoto M, Iwamaru Y, Sugama S, Sekiyama K, Sato M, Kojima S, Hashimoto M et al (2015) Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells. Immunol Lett 167(2):116–124. http://sci-hub.tw/10.1016/j.imlet.2015.08.002 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H et al (2018) Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J 32(1):512–528. http://sci-hub.tw/10.1096/fj.201700673R PubMedCrossRefGoogle Scholar
  38. 38.
    Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248. http://sci-hub.tw/10.1016/j.lfs.2015.10.025 PubMedCrossRefGoogle Scholar
  39. 39.
    Valdivia S, Patrone A, Reynaldo M, Perello M (2014) Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoSOne 9(1):e87478CrossRefGoogle Scholar
  40. 40.
    Bonaventura MM, Catalano PN, Chamson-Reig A, Arany E, Hill D, Bettler B, Saravia F, Libertun C et al (2008) GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice. Am J Physiol Endocrinol Metab 294(1):E157–E167PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Beauquis J, Vinuesa A, Pomilio C, Pavia P, Galvan V, Saravia F (2014) Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer’s disease. Hippocampus 24(3):257–269PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Beauquis J, Homo-Delarche F, Giroix MH, Ehses J, Coulaud J, Roig P, Portha B, De Nicola AF et al (2010) Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp Neurol 222(1):125–134PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, Kotler ML, Beauquis J et al (2016) Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Abeta internalization. Hippocampus 26(2):194–210. http://sci-hub.tw/10.1002/hipo.22503 PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Pozzo-Miller LD, Inoue T, Murphy DD (1999) Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. J Neurophysiol 81(3):1404–1411. http://sci-hub.tw/10.1152/jn.1999.81.3.1404 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Giachero M, Calfa GD, Molina VA (2013) Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning. Learn Mem 20(11):611–616. http://sci-hub.tw/10.1101/lm.031724.113 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Koh IY, Lindquist WB, Zito K, Nimchinsky EA, Svoboda K (2002) An image analysis algorithm for dendritic spines. Neural Comput 14(6):1283–1310. http://sci-hub.tw/10.1162/089976602753712945 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553(Pt 2):497–509. http://sci-hub.tw/10.1113/jphysiol.2003.052639 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Calfa G, Chapleau CA, Campbell S, Inoue T, Morse SJ, Lubin FD, Pozzo-Miller L (2012) HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons. Hippocampus 22(7):1493–1500. http://sci-hub.tw/10.1002/hipo.20990 PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72):248–254CrossRefGoogle Scholar
  50. 50.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M et al (2018) The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48(5):979–991 e978. http://sci-hub.tw/10.1016/j.immuni.2018.04.016 PubMedCrossRefGoogle Scholar
  52. 52.
    Oliveira AF, Cunha DA, Ladriere L, Igoillo-Esteve M, Bugliani M, Marchetti P, Cnop M (2015) In vitro use of free fatty acids bound to albumin: a comparison of protocols. BioTechniques 58(5):228–233. http://sci-hub.tw/10.2144/000114285 PubMedCrossRefGoogle Scholar
  53. 53.
    Shelke GV, Lasser C, Gho YS, Lotvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3. http://sci-hub.tw/10.3402/jev.v3.24783
  54. 54.
    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chapleau CA, Larimore JL, Theibert A, Pozzo-Miller L (2009) Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 1(3):185–196PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    On V, Zahedi A, Ethell IM, Bhanu B (2017) Automated spatio-temporal analysis of dendritic spines and related protein dynamics. PLoS One 12(8):e0182958. http://sci-hub.tw/10.1371/journal.pone.0182958 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Guillausseau PJ, Meas T, Virally M, Laloi-Michelin M, Medeau V, Kevorkian JP (2008) Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab 34(Suppl 2):S43–S48. http://sci-hub.tw/10.1016/S1262-3636(08)73394-9 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Laye S, Ferreira G (2012) Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus 22(11):2095–2100PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lee H, Lee S, Cho IH, Lee SJ (2013) Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci 14(1):33–42PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sobesky JL, Barrientos RM, De May HS, Thompson BM, Weber MD, Watkins LR, Maier SF (2014) High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1beta, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun 42:22–32PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Guillemot-Legris O, Muccioli GG (2017) Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci 40(4):237–253. http://sci-hub.tw/10.1016/j.tins.2017.02.005 PubMedCrossRefGoogle Scholar
  62. 62.
    Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249(1):218–238. http://sci-hub.tw/10.1111/j.1600-065X.2012.01151.x PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, Murakami Y, Mouri A et al (2018) Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes. Glia 66(5):1034–1052. http://sci-hub.tw/10.1002/glia.23299 PubMedCrossRefGoogle Scholar
  64. 64.
    Zou C, Shi Y, Ohli J, Schuller U, Dorostkar MM, Herms J (2016) Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease. Acta Neuropathol 131(2):235–246. http://sci-hub.tw/10.1007/s00401-015-1527-8 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kelly KM, Nadon NL, Morrison JH, Thibault O, Barnes CA, Blalock EM (2006) The neurobiology of aging. Epilepsy Res 68(Suppl 1):S5–S20. http://sci-hub.tw/10.1016/j.eplepsyres.2005.07.015 PubMedCrossRefGoogle Scholar
  66. 66.
    Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Bashir S, Vernet M et al (2011) Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 24(3–4):302–315. http://sci-hub.tw/10.1007/s10548-011-0196-8 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69(3):143–179PubMedCrossRefGoogle Scholar
  68. 68.
    Saravia F, Beauquis J, Pietranera L, De Nicola A (2007) Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice. Psychoneuroendocrinology 32:480–492PubMedCrossRefGoogle Scholar
  69. 69.
    Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Laye S, Ferreira G (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40:9–17PubMedCrossRefGoogle Scholar
  70. 70.
    Valladolid-Acebes I, Fole A, Martin M, Morales L, Cano MV, Ruiz-Gayo M, Del Olmo N (2013) Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? Neurobiol Learn Mem 106:18–25PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27(1):22–32. http://sci-hub.tw/10.1016/j.bbi.2012.09.003 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Belarbi K, Rosi S (2013) Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 7:145. http://sci-hub.tw/10.3389/fncel.2013.00145 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC (2014) Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 8:142. http://sci-hub.tw/10.3389/fnana.2014.00142 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089. http://sci-hub.tw/10.1146/annurev.neuro.24.1.1071 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Luengo-Sanchez S, Fernaud-Espinosa I, Bielza C, Benavides-Piccione R, Larranaga P, DeFelipe J (2018) 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLoS Comput Biol 14(6):e1006221. http://sci-hub.tw/10.1371/journal.pcbi.1006221 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729. http://sci-hub.tw/10.1016/j.neuron.2008.01.013 PubMedCrossRefGoogle Scholar
  77. 77.
    McKinney RA (2010) Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 588(Pt 1):107–116. http://sci-hub.tw/10.1113/jphysiol.2009.178905 PubMedCrossRefGoogle Scholar
  78. 78.
    Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658. http://sci-hub.tw/10.1038/nrn2699 PubMedCrossRefGoogle Scholar
  79. 79.
    Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33(3):121–129. http://sci-hub.tw/10.1016/j.tins.2010.01.001 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sarowar T, Grabrucker AM (2016) Actin-dependent alterations of dendritic spine morphology in shankopathies. Neural Plast 2016:8051861. http://sci-hub.tw/10.1155/2016/8051861 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Berkel S, Tang W, Trevino M, Vogt M, Obenhaus HA, Gass P, Scherer SW, Sprengel R et al (2012) Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum Mol Genet 21(2):344–357. http://sci-hub.tw/10.1093/hmg/ddr470 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Mahmmoud RR, Sase S, Aher YD, Sase A, Groger M, Mokhtar M, Hoger H, Lubec G (2015) Spatial and working memory is linked to spine density and mushroom spines. PLoS One 10(10):e0139739. http://sci-hub.tw/10.1371/journal.pone.0139739 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC (2014) Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci 17(6):241–251PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Boitard C, Maroun M, Tantot F, Cavaroc A, Sauvant J, Marchand A, Laye S, Capuron L et al (2015) Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci 35(9):4092–4103PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Li S, Li H, Yang D, Yu X, Irwin DM, Niu G, Tan H (2017) Excessive autophagy activation and increased apoptosis are associated with palmitic acid-induced cardiomyocyte insulin resistance. J Diabetes Res 2017:2376893. http://sci-hub.tw/10.1155/2017/2376893 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Mayer CM, Belsham DD (2010) Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5′ monophosphate-activated protein kinase activation. Endocrinology 151(2):576–585. http://sci-hub.tw/10.1210/en.2009-1122 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tang S, Wu W, Tang W, Ge Z, Wang H, Hong T, Zhu D, Bi Y (2017) Suppression of Rho-kinase 1 is responsible for insulin regulation of the AMPK/SREBP-1c pathway in skeletal muscle cells exposed to palmitate. Acta Diabetol 54(7):635–644. http://sci-hub.tw/10.1007/s00592-017-0976-z PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Gupta N, Goel K, Shah P, Misra A (2012) Childhood obesity in developing countries: epidemiology, determinants, and prevention. Endocr Rev 33(1):48–70PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J et al (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59(9):2171–2177. http://sci-hub.tw/10.2337/db09-0138 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Spinelli M, Fusco S, Mainardi M, Scala F, Natale F, Lapenta R, Mattera A, Rinaudo M et al (2017) Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat Commun 8(1):2009. http://sci-hub.tw/10.1038/s41467-017-02221-9 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang Z, Liu D, Wang F, Liu S, Zhao S, Ling EA, Hao A (2012) Saturated fatty acids activate microglia via Toll-like receptor 4/NF-kappaB signalling. Br J Nutr 107(2):229–241. http://sci-hub.tw/10.1017/S0007114511002868 PubMedCrossRefGoogle Scholar
  92. 92.
    Chunchai T, Chattipakorn N, Chattipakorn SC (2017) The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction. Metab Brain Dis. http://sci-hub.tw/10.1007/s11011-017-0151-9
  93. 93.
    Tracy LM, Bergqvist F, Ivanova EV, Jacobsen KT, Iverfeldt K (2013) Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response. J Mol Neurosci 51(3):805–812. http://sci-hub.tw/10.1007/s12031-013-0068-7 PubMedCrossRefGoogle Scholar
  94. 94.
    Bellot A, Guivernau B, Tajes M, Bosch-Morato M, Valls-Comamala V, Munoz FJ (2014) The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Res 1573:1–16. http://sci-hub.tw/10.1016/j.brainres.2014.05.024 PubMedCrossRefGoogle Scholar
  95. 95.
    Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849. http://sci-hub.tw/10.1038/nrn2763 PubMedCrossRefGoogle Scholar
  96. 96.
    Prada I, Gabrielli M, Turola E, Iorio A, D’Arrigo G, Parolisi R, De Luca M, Pacifici M et al (2018) Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 135(4):529–550. http://sci-hub.tw/10.1007/s00401-017-1803-x PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    de Sena Cortabitarte A, Berkel S, Cristian FB, Fischer C, Rappold GA (2018) A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders. J Neurodev Disord 10(1):15. http://sci-hub.tw/10.1186/s11689-018-9233-1 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368. http://sci-hub.tw/10.1074/jbc.M600504200 PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863. http://sci-hub.tw/10.1038/13158 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angeles Vinuesa
    • 1
    • 2
  • Melisa Bentivegna
    • 1
    • 2
  • Gastón Calfa
    • 3
  • Fabia Filipello
    • 4
  • Carlos Pomilio
    • 1
    • 2
  • María Marta Bonaventura
    • 2
  • Victoria Lux-Lantos
    • 2
  • María Eugenia Matzkin
    • 2
  • Amal Gregosa
    • 1
    • 2
  • Jessica Presa
    • 1
    • 2
  • Michela Matteoli
    • 4
  • Juan Beauquis
    • 1
    • 2
  • Flavia Saravia
    • 1
    • 2
  1. 1.Neurobiology of Aging, Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
  2. 2.Instituto de Biología y Medicina Experimental, CONICETBuenos AiresArgentina
  3. 3.IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Laboratory of Pharmacology and Brain PathologyHumanitas Clinical and Research CenterMilanItaly

Personalised recommendations