Zika Virus Infection of Human Mesenchymal Stem Cells Promotes Differential Expression of Proteins Linked to Several Neurological Diseases


The recent microcephaly outbreak in Brazil has been associated with Zika virus (ZIKV) infection. The current understanding of damage caused by ZIKV infection is still unclear, since it has been implicated in other neurodegenerative and developmental complications. Here, the differential proteome analysis of human mesenchymal stem cells (hMSC) infected with a Brazilian strain of ZIKV was identified by shotgun proteomics (MudPIT). Our results indicate that ZIKV induces a potential reprogramming of the metabolic machinery in nucleotide metabolism, changes in the energy production via glycolysis and other metabolic pathways, and potentially inhibits autophagy, neurogenesis, and immune response by downregulation of signaling pathways. In addition, proteins previously described in several brain pathologies, such as Alzheimer’s disease, autism spectrum disorder, amyotrophic lateral sclerosis, and Parkinson’s disease, were found with altered expression due to ZIKV infection in hMSC. This potential link between ZIKV and several neuropathologies beyond microcephaly is being described here for the first time and can be used to guide specific follow-up studies concerning these specific diseases and ZIKV infection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    França GV, Schuler-Faccini L, Oliveira WK, Henriques CM, Carmo EH, Pedi VD et al (2016) Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388(10047):891–897. https://doi.org/10.1016/S0140-6736(16)30902-3

    Article  PubMed  Google Scholar 

  2. 2.

    Schuler-Faccini L, Ribeiro EM, Feitosa IM et al (2016) Possible association between Zika virus infection and microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65:59–62. https://doi.org/10.15585/mmwr.mm6503e2

    Article  PubMed  Google Scholar 

  3. 3.

    McDonald WH, Yates JR 3rd (2002) Shotgun proteomics and biomarker discovery. Dis Markers 18(2):99–105

    CAS  Article  Google Scholar 

  4. 4.

    Beys-da-Silva WO, Santi L, Berger M, Calzolari D, Passos DO, Guimarães JA, Moresco JJ, Yates JR (2014) Secretome of the biocontrol agent Metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. J Proteome Res 13:2282–2296. https://doi.org/10.1021/pr401204y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR (2014) Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 13:1545–1559. https://doi.org/10.1021/pr401075f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Berger M, Santi L, Beys-da-Silva WO, Oliveira FMS, Caliari MV, Yates JR, Vieira MAR, Guimarães JA (2015) Mechanisms of acute kidney injury induced by experimental Lonomia obliqua envenomation. Arch Toxicol 89:459–483. https://doi.org/10.1007/s00204-014-1264-0

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Garcez PP, Nascimento JM, Vasconcelos JM, Costa RM, Delvecchio R, Trindade P et al (2017) Zika virus disrupts molecular fingerprinting of human neurospheres. Sci Rep 7:40780. https://doi.org/10.1038/srep40780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zomer HD, Vidane AS, Gonçalves NN, Ambrosio CE (2015) Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning 8:125–134. https://doi.org/10.2147/SCCAA.S88036.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ, Izidoro-Toledo TC, da Silva JF, Teixeira AL et al (2017) Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol 8:1016. https://doi.org/10.3389/fimmu.2017.01016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    El Costa H, Gouilly J, Mansoy J-M, Chen Q, Levy C, Cartron G et al (2016) ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci Rep 6:35296. https://doi.org/10.1038/srep35296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. https://doi.org/10.1091/mbc.e02-02-0105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Meirelles LDS, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123(4):702–711

    Article  Google Scholar 

  13. 13.

    Terraciano P, Garcez T, Ayres L, Durli I, Baggio M, Kuhl CP, Laurino C, Passos E et al (2014) Cell therapy for chemically induced ovarian failure in mice. Stem Cells Int 2014:720753. https://doi.org/10.1155/2014/720753

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247. https://doi.org/10.1038/85686

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Xu T, Venable JD, Park SK, Cociorva D, Lu B, Liao L et al (2006) ProLuCID, a fast and sensitive tandem mass spectra-based protein identification program. Mol Cell Proteomics 5:S174

    Google Scholar 

  16. 16.

    Tabb DL, McDonald WH, Yates JR 3rd (2002) DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1:21–26

    CAS  Article  Google Scholar 

  17. 17.

    He L, Diedrich JK, Chu YY, Yates JR (2015) Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal Chem 87(22):11361–11367. https://doi.org/10.1021/acs.analchem.5b02721

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5(4):319–322. https://doi.org/10.1038/nmeth.1195

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435. https://doi.org/10.1093/nar/gkn176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gaudet P, Livstone MS, Lewis SE, Thomas PD (2011) Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief Bioinform 12(5):449–462. https://doi.org/10.1093/bib/bbr042

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI et al (2013) MalaCards: an integrated compendium for diseases and their annotation. Database 2013:018. https://doi.org/10.1093/database/bat018

    CAS  Article  Google Scholar 

  22. 22.

    Rolfe AJ, Bosco DB, Wang J, Nowakowski RS, Fan J, Ren Y (2016) Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell Biosci 6:42. https://doi.org/10.1186/s13578-016-0110-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Scardoni G, Tosadori G, Faizan M, Spoto F, Fabbri F, Laudanna C (2014) Biological network analysis with CentiScaPe: centralities and experimental dataset integration. F1000Research 3:139. https://doi.org/10.12688/f1000research.4477.2

    Article  PubMed  Google Scholar 

  26. 26.

    Tiwari SK, Dang J, Qin Y, Lichinchi G, Bansal V, Rana TM (2017) Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerg Microbes Infect 6(4):e24. https://doi.org/10.1038/emi.2017.9

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brahma R, Gurumayum S, Naorem LD, Muthaiyan M, Gopal J, Venkatesan A (2018) Identification of hub genes and pathways in Zika virus infection using rna-seq data: a network-based computational approach. Viral Immunol 31(4):321–332. https://doi.org/10.1089/vim.2017.0116

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Caires-Júnior LC, Goulart E, Melo US, Araujo BHS, Alvizi L, Soares-Schanoski A, de Oliveira DF, Kobayashi GS et al (2018) Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells. Nat Commun 9(1):475. https://doi.org/10.1038/s41467-017-02790-9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Melo CFOR, Delafiori J, Oliveira DN, Guerreiro TM, Esteves CZ et al (2017) Serum metabolic alterations upon Zika infection. Front Microbiol 8:2373. https://doi.org/10.3389/fmicb.2017.01954

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wang L, Yang L, Fikrig E, Wang P (2017) An essential role of PI3K in the control of West Nile virus infection. Sci Rep 7:3724. https://doi.org/10.1038/s41598-017-03912-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nakajima S, Kitamura M (2013) Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 65:162–174. https://doi.org/10.1016/j.freeradbiomed.2013.06.020

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S (2015) Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-kappaB connection. Curr Top Med Chem 15:446–457. https://doi.org/10.2174/1568026615666150114160543

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255. https://doi.org/10.1002/glia.21094

    Article  PubMed  Google Scholar 

  34. 34.

    Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479-480:609–618. https://doi.org/10.1016/j.virol.2015.02.038

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Qimron U, Tabor S, Richardson CC (2010) New details about bacteriophage T7-host interactions. Microbe 5(3):117–122

    Google Scholar 

  37. 37.

    Enav H, Mandel-Gutfreund Y, Béjà O (2014) Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome 2:9. https://doi.org/10.1186/2049-2618-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmström J, Brunner E, Mohanty S et al (2009) Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol 7(3):e48. https://doi.org/10.1371/journal.pbio.1000048

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature11848.

    Article  PubMed  Google Scholar 

  40. 40.

    de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5:1512–1526. https://doi.org/10.1039/b908315d.

    Article  PubMed  Google Scholar 

  41. 41.

    Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Rappaport N, Twik M, Plaschkes I, Nudel R, Stein TI, Levitt J et al (2017) MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res 45:D877–D887. https://doi.org/10.1093/nar/gkw1012

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Sadleir KR, Vassar R (2012) Cdk5 protein inhibition and Aβ42 increase bace1 protein level in primary neurons by a posttranscriptional mechanism implications of cdk5 as a therapeutic target for Alzheimer disease. J Biol Chem 287(10):7224–7235. https://doi.org/10.1074/jbc.M111.333914.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sontag JM, Nunbhakdi-Craig V, White CL, Halpain S, Sontag E (2012) The protein phosphatase pp2a/bα binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem 287(18):14984–14993. https://doi.org/10.1074/jbc.M111.338681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14:69–76. https://doi.org/10.1038/nn.2709

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Liu JS (2011) Molecular genetics of neuronal migration disorders. Curr Neurol Neurosci Rep 11(2):171–178. https://doi.org/10.1007/s11910-010-0176-5

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    McNamara CR, Degterev A (2011) Small-molecule inhibitors of the PI3K signaling network. Future Med Chem 3(5):549–565. https://doi.org/10.4155/fmc.11.12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD et al (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57:667–678. https://doi.org/10.1124/mol.57.4.667

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Janssens S, Schotsaert M, Karnik R, Balasubramaniam V, Dejosez M, Meissner A, García-Sastre A, Zwaka TP (2018) Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. mSystems 3(1):e00219–e00217. https://doi.org/10.1128/mSystems.00219-17

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schuler-Faccini L, Roehe P, Zimmer ER, Quincozes-Santos A, de Assis AM, Lima EOC, Guimarães JA, Victora C et al (2018) ZIKA virus and neuroscience: the need for a translational collaboration. Mol Neurobiol 55(2):1551–1555. https://doi.org/10.1007/s12035-017-0429-2

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank Dr. E. Durigon, ICB/USP, for supplying the ZIKV strain. PMR is a 1A CNPq research fellow. APMV and TFT acknowledges postdoctoral fellowship support by CNPq/HCPA.


This work was supported by the Brazilian funding agencies Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), FAPERGS, Edital MCTIC/FNDCT-CNPq/ MEC-CAPES/ MS-Decit / No 14/2016, project 440763/2016-9. The study was also supported by NIH grants NIH/NIHGM P41 GM103533-22 and NIH/NIMH 5 R01 MH067880-14 (to JRY).

Author information



Corresponding authors

Correspondence to Walter O. Beys-da-Silva or Jorge A. Guimarães.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the institutional research ethics committee of Hospital de Clínicas de Porto Alegre (Federal University of Rio Grande do Sul) under protocol # 2018-0059.

Additional information

Walter O. Beys-da-Silva, Rafael L. Rosa, and Lucélia Santi contribute equally for the manuscript.

Electronic Supplementary Material


(PDF 121 kb)

Supplementary Figure 1

PI3K-AKT signaling pathway affected by ZIKV infection in hMSC. Green rectangle: protein down-regulated in ZIKV infection. (PDF 58 kb)

Supplementary Figure 2

mTOR signaling pathway affected by ZIKV infection in hMSC. Green rectangle: proteins down-regulated in ZIKV infection; red rectangle: protein up-regulated in ZIKV infection. (PDF 40 kb)

Supplementary Figure 3

Phosphatidylinositol signaling system affected by ZIKV infection in hMSC. Green rectangle: proteins down-regulated in ZIKV infection. (PDF 177 kb)

Supplementary Table 1

(DOCX 13 kb)

Supplementary Table 2

(XLSX 159 kb)

Supplementary Table 3

(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beys-da-Silva, W.O., Rosa, R.L., Santi, L. et al. Zika Virus Infection of Human Mesenchymal Stem Cells Promotes Differential Expression of Proteins Linked to Several Neurological Diseases. Mol Neurobiol 56, 4708–4717 (2019). https://doi.org/10.1007/s12035-018-1417-x

Download citation


  • Zika virus
  • Brain diseases
  • Human mesenchymal stem cells
  • Proteome
  • Microcephaly