Abstract
Diffuse low-grade and intermediate-grade gliomas (together known as lower grade gliomas, WHO grade II and III) develop in the supporting glial cells of brain and are the most common types of primary brain tumor. Despite a better prognosis for lower grade gliomas, 70% of patients undergo high-grade transformation within 10 years, stressing the importance of better prognosis. Long non-coding RNAs (lncRNAs) are gaining attention as potential biomarkers for cancer diagnosis and prognosis. We have developed a computational model, UVA8, for prognosis of lower grade gliomas by combining lncRNA expression, Cox regression, and L1-LASSO penalization. The model was trained on a subset of patients in TCGA. Patients in TCGA, as well as a completely independent validation set (CGGA) could be dichotomized based on their risk score, a linear combination of the level of each prognostic lncRNA weighted by its multivariable Cox regression coefficient. UVA8 is an independent predictor of survival and outperforms standard epidemiological approaches and previous published lncRNA-based predictors as a survival model. Guilt-by-association studies of the lncRNAs in UVA8, all of which predict good outcome, suggest they have a role in suppressing interferon-stimulated response and epithelial to mesenchymal transition. The expression levels of eight lncRNAs can be combined to produce a prognostic tool applicable to diverse populations of glioma patients. The 8 lncRNA (UVA8) based score can identify grade II and grade III glioma patients with poor outcome, and thus identify patients who should receive more aggressive therapy at the outset.
This is a preview of subscription content, access via your institution.






Abbreviations
- lncRNA:
-
Long non-coding RNAs
- WHO:
-
World Health Organization
- LGG:
-
Lower grade gliomas
- GBM:
-
Glioblastoma multiforme
- CNS:
-
Central nervous system
- TCGA:
-
The Cancer Genome Atlas
- CGGA:
-
Chinese Glioma Genome Atlas
- HR:
-
Hazard ratio
- PFS:
-
Progression-free survival
- IFNG:
-
Interferon gamma
- Cindex:
-
Concordance index
- AUC:
-
Area under curve
- ROC:
-
Receiver operating characteristics
- UVA8:
-
University of Virginia 8
- L1-LASSO:
-
L1 least absolute shrinkage and selection operator
- MGMT:
-
O6-methylguanine DNA methyltransferase
- FPKM:
-
Fragment per kilobase per million
- GTF:
-
Gene transfer format
References
- 1.
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. https://doi.org/10.1101/gr.132159.111
- 2.
Cabili M, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. https://doi.org/10.1101/gad.17446611
- 3.
Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253–1261. https://doi.org/10.1038/nm.3981
- 4.
Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463. https://doi.org/10.1016/j.ccell.2016.03.010
- 5.
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330
- 6.
Huang J, Samson P, Perkins SM, Ansstas G, Chheda MG, DeWees TA, Tsien CI, Robinson CG et al (2017) Impact of concurrent chemotherapy with radiation therapy for elderly patients with newly diagnosed glioblastoma: a review of the National Cancer Data Base. J Neuro-Oncol 131:593–601. https://doi.org/10.1007/s11060-016-2331-6
- 7.
Ducray F, Idbaih A, Wang X-W, Cheneau C, Labussiere M, Sanson M (2011) Predictive and prognostic factors for gliomas. Expert Rev Anticancer Ther 11:781–789. https://doi.org/10.1586/era.10.202
- 8.
Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. https://doi.org/10.1126/science.1112014
- 9.
Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19. https://doi.org/10.1101/gr.4200206
- 10.
Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823. https://doi.org/10.1152/physrev.00036.2006
- 11.
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139
- 12.
Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35
- 13.
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:712–716. https://doi.org/10.1073/pnas.0706729105
- 14.
Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS (2009) Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 15:2013–2027. https://doi.org/10.1261/rna.1705309
- 15.
Johnson R, Teh CH-L, Jia H, Vanisri RR, Pandey T, Lu ZH, Buckley NJ, Stanton LW et al (2009) Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15:85–96. https://doi.org/10.1261/rna.1127009
- 16.
Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441:595–600. https://doi.org/10.1038/nature04678
- 17.
Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, Wang R, Feng J et al (2017) Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke 48:2211–2221. https://doi.org/10.1161/STROKEAHA.117.017387
- 18.
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64. https://doi.org/10.1038/sj.mp.4002106
- 19.
Zhang X, Sun S, Pu JKS, Tsang ACO, Lee D, Man VOY, Lui WM, Wong STS et al (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 48:1–8. https://doi.org/10.1016/J.NBD.2012.06.004
- 20.
Reon BJ, Anaya J, Zhang Y, Mandell J, Purow B, Abounader R, Dutta A (2016) Expression of lncRNAs in low-grade gliomas and glioblastoma multiforme: an in silico analysis. PLoS Med 13:e1002192. https://doi.org/10.1371/journal.pmed.1002192
- 21.
Li R, Qian J, Wang Y-Y, Zhang JX, You YP (2014) Long noncoding RNA profiles reveal three molecular subtypes in glioma. CNS Neurosci Ther 20:339–343. https://doi.org/10.1111/cns.12220
- 22.
Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, Yan X, Li J et al (2018) An immune-related lncRNA signature for patients with anaplastic gliomas. J Neuro-Oncol 136:263–271. https://doi.org/10.1007/s11060-017-2667-6
- 23.
Wang W, Yang F, Zhang L et al (2016) LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget 7:77225–77236. https://doi.org/10.18632/oncotarget.12624
- 24.
Zhang X-Q, Sun S, Lam K-F, Kiang KMY, Pu JKS, Ho ASW, Lui WM, Fung CF et al (2013) A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 58:123–131. https://doi.org/10.1016/J.NBD.2013.05.011
- 25.
Chen G, Cao Y, Zhang L et al (2017) Analysis of long non-coding RNA expression profiles identifies novel lncRNA biomarkers in the tumorigenesis and malignant progression of gliomas. Oncotarget 8:67744–67753. https://doi.org/10.18632/oncotarget.18832
- 26.
van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. https://doi.org/10.1056/NEJMoa021967
- 27.
Spentzos D, Levine D, Ramoni M et al (2004) Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J Clin Oncol 22:4700–4710. https://doi.org/10.1200/jco.2004.04.070
- 28.
Bullinger L, Döhner K, Bair E, Fröhling S, Schlenk RF, Tibshirani R, Döhner H, Pollack JR (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616. https://doi.org/10.1056/NEJMoa031046
- 29.
Chibon F (2013) Cancer gene expression signatures-the rise and fall? Eur J Cancer 49:2000–2009. https://doi.org/10.1016/j.ejca.2013.02.021
- 30.
Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, Hu BQ, Yan W et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res 24:1765–1773. https://doi.org/10.1101/gr.165126.113
- 31.
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774. https://doi.org/10.1101/gr.135350.111
- 32.
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122
- 33.
Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med 16:385–395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
- 34.
Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B Stat Methodol 73:273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x
- 35.
Goeman JJ (2010) L1 penalized estimation in the Cox proportional hazards model. Biom J 52:70–84. https://doi.org/10.1002/bimj.200900028
- 36.
Alizadeh AA, Gentles AJ, Alencar AJ, Liu CL, Kohrt HE, Houot R, Goldstein MJ, Zhao S et al (2011) Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood 118:1350–1358. https://doi.org/10.1182/blood-2011-03-345272
- 37.
Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, Levy R (2004) Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350:1828–1837. https://doi.org/10.1056/NEJMoa032520
- 38.
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33: . doi: https://doi.org/10.18637/jss.v033.i01
- 39.
Raykar VC, Steck H, Krishnapuram B, et al On ranking in survival analysis: bounds on the concordance index
- 40.
Gerds TA, Kattan MW, Schumacher M, Yu C (2013) Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med 32:2173–2184. https://doi.org/10.1002/sim.5681
- 41.
Kim TK, Hemberg M, Gray JM (2015) Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb Perspect Biol 7:a018622. https://doi.org/10.1101/cshperspect.a018622
- 42.
Panzitt K, Tschernatsch MMO, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330–342. https://doi.org/10.1053/J.GASTRO.2006.08.026
- 43.
Du Z, Fei T, Verhaak RGW et al (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20:908–913. https://doi.org/10.1038/nsmb.2591
- 44.
Mohankumar S, Patel T (2016) Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics 15:249–256. https://doi.org/10.1093/bfgp/elv058
- 45.
Zhou M, Zhang Z, Zhao H, et al (2017) An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol 1–14
- 46.
Angileri FF, Aguennouz M, Conti A et al (2008) Nuclear factor-κB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer 112:2258–2266. https://doi.org/10.1002/cncr.23407
- 47.
Korkolopoulou P, Levidou G, Saetta AA, el-Habr E, Eftichiadis C, Demenagas P, Thymara I, Xiromeritis K et al (2008) Expression of nuclear factor-κB in human astrocytomas: relation to pIκBa, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum Pathol 39:1143–1152. https://doi.org/10.1016/J.HUMPATH.2008.01.020
- 48.
Schaefer LK, Ren Z, Fuller GN, Schaefer TS (2002) Constitutive activation of Stat3α in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21:2058–2065. https://doi.org/10.1038/sj.onc.1205263
- 49.
Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N et al (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235. https://doi.org/10.1158/1078-0432.CCR-08-1329
- 50.
Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA (2014) The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol 1:e963478. https://doi.org/10.4161/23723548.2014.963478
- 51.
Kesanakurti D, Chetty C, Rajasekhar Maddirela D, Gujrati M, Rao JS (2013) Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene 32:5144–5155. https://doi.org/10.1038/onc.2012.546
- 52.
Coupienne I, Bontems S, Dewaele M, Rubio N, Habraken Y, Fulda S, Agostinis P, Piette J (2011) NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochem Pharmacol 81:606–616. https://doi.org/10.1016/J.BCP.2010.12.015
- 53.
Sakurai K, Reon BJ, Anaya J, Dutta A (2015) The lncRNA DRAIC/PCAT29 locus constitutes a tumor-suppressive nexus. Mol Cancer Res 13:828–838. https://doi.org/10.1158/1541-7786.MCR-15-0016-T
Acknowledgments
We thank Dr. Stefan Bekiranov, Dr. William Pearson, and Dutta lab members for helpful discussions. M.K. is supported by a DOD award PC151085.
Funding
The work was supported by a V foundation award D2018-002 and R01 AR067712 from NIAMS.
Author information
Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 5047 kb)
Rights and permissions
About this article
Cite this article
Kiran, M., Chatrath, A., Tang, X. et al. A Prognostic Signature for Lower Grade Gliomas Based on Expression of Long Non-Coding RNAs. Mol Neurobiol 56, 4786–4798 (2019). https://doi.org/10.1007/s12035-018-1416-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Long non-coding RNAs
- Gliomas
- Gene expression profiling
- Prognosis