Abstract
Systemic inflammation and ammonia (hyperammonemia) act synergistically in the pathogenesis of hepatic encephalopathy (HE), the neurobehavioral sequelae of advanced liver disease. In cirrhotic patients, we have recently observed elevated levels of circulating neuronal tight junction (TJ) protein, zonula occludens 1 (ZO-1), reflective of a change to blood–brain barrier (BBB) integrity. Moreover, ZO-1 levels positively correlated with hyperammonemia, although any potential relationship remains unclear. Using a carbon tetrachloride (CCl4)–induced mouse model of cirrhosis, we primarily looked to explore the relationship between neuronal TJ protein expression and hyperammonemia. Secondarily, we assessed the potential role of a natural antioxidant, resveratrol, on neuronal TJ protein expression and hyperammonemia. Over 12 weeks, male Swiss mice were randomized (n = 8/group) to either naïve controls or induced cirrhosis, using two doses of intraperitoneal CCl4 (0.5 ml/kg/week). After 12 weeks, naïve and cirrhotic mice were randomized to receive either 2 weeks of par-oral resveratrol (10 mg/kg). Plasma samples were analyzed for ammonia, liver biochemistry (ALT, AST, albumin, and bilirubin), and pro-inflammatory cytokines (TNF-α and IL-1β), and brain tissue for brain water content, TJ protein expression (e.g., ZO-1, claudin 5, and occludin), and tissue oxidative stress and inflammatory markers (NF-κB and iNOS) using western blotting. Compared to naïve mice, cirrhosis significantly increased circulating ammonia, brain water, ALT, AST, TNF-α, IL-1β, 4HNE, NF-κB, and iNOS levels, with a concomitant reduction in all TJ proteins (P < 0.05, respectively). In cirrhotic mice, resveratrol treatment ameliorated these changes significantly (P < 0.05, respectively). Our findings provide evidence for a causal association between hyperammonemia and inflammation in cirrhosis linked to TJ protein alterations, BBB disruption, and HE predilection. Moreover, this is the first report of a potential role for resveratrol as a novel therapeutic approach to managing neurological sequelae complicating cirrhosis.
Similar content being viewed by others
References
Wijdicks EF (2016) Hepatic encephalopathy. N Engl J Med 375(17):1660–1670. https://doi.org/10.1056/NEJMra1600561
Weiss N, Jalan R, Thabut D (2018) Understanding hepatic encephalopathy. Intensive Care Med 44(2):231–234. https://doi.org/10.1007/s00134-017-4845-6
Fichet J, Mercier E, Genee O, Garot D, Legras A, Dequin PF, Perrotin D (2009) Prognosis and 1-year mortality of intensive care unit patients with severe hepatic encephalopathy. J Crit Care 24(3):364–370. https://doi.org/10.1016/j.jcrc.2009.01.008
Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD (2010) Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology 51(3):1062–1069. https://doi.org/10.1002/hep.23367
Sawhney R, Holland-Fischer P, Rosselli M, Mookerjee RP, Agarwal B, Jalan R (2016) Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl 22(6):732–742. https://doi.org/10.1002/lt.24443
Olde Damink SW, Jalan R, Redhead DN, Hayes PC, Deutz NE, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36(5):1163–1171. https://doi.org/10.1053/jhep.2002.36497
Skowronska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21(2):236–244. https://doi.org/10.1007/s12640-011-9269-4
Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell–cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 6(3):179–192. https://doi.org/10.2174/157015908785777210
Wang D, Li SP, Fu JS, Zhang S, Bai L, Guo L (2016) Resveratrol defends blood–brain barrier integrity in experimental autoimmune encephalomyelitis mice. J Neurophysiol 116(5):2173–2179. https://doi.org/10.1152/jn.00510.2016
Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, Al-Salami H, Coulson SH et al (2017) Blood–brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: an implication for causal link. Front Aging Neurosci 9:399. https://doi.org/10.3389/fnagi.2017.00399
Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R (2017) Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 65(4):1306–1318. https://doi.org/10.1002/hep.29031
Belanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T (2007) Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 50(1):95–101. https://doi.org/10.1016/j.neuint.2006.07.005
Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21(7):1200–1213. https://doi.org/10.1091/mbc.E09-08-0734
Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127(6 Pt 1):1617–1626
Cording J, Berg J, Kading N, Bellmann C, Tscheik C, Westphal JK, Milatz S, Gunzel D et al (2013) In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 126(Pt 2):554–564. https://doi.org/10.1242/jcs.114306
Chow BW, Gu C (2015) The molecular constituents of the blood–brain barrier. Trends Neurosci 38(10):598–608. https://doi.org/10.1016/j.tins.2015.08.003
Rochfort KD, Cummins PM (2015) The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43(4):702–706. https://doi.org/10.1042/BST20140319
McLoughlin A, Rochfort KD, McDonnell CJ, Kerrigan SW, Cummins PM (2017) Staphylococcus aureus-mediated blood–brain barrier injury: an in vitro human brain microvascular endothelial cell model. Cell Microbiol 19 (3). doi:https://doi.org/10.1111/cmi.12664
Amararathna M, Johnston MR, Rupasinghe HP (2016) Plant polyphenols as chemopreventive agents for lung cancer. Int J Mol Sci 17(8):1352. https://doi.org/10.3390/ijms17081352
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA et al (2013) Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 61:215–226. https://doi.org/10.1016/j.fct.2013.07.021
Hu J, Han H, Cao P, Yu W, Yang C, Gao Y, Yuan W (2017) Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 9(10):4607–4616
Ling KH, Wan ML, El-Nezami H, Wang M (2016) Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chem Res Toxicol 29(5):823–833. https://doi.org/10.1021/acs.chemrestox.6b00001
Lee S, Yoon KD, Lee M, Cho Y, Choi G, Jang H, Kim B, Jung DH et al (2016) Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol 173(1):191–211. https://doi.org/10.1111/bph.13358
Kessoku T, Imajo K, Honda Y, Kato T, Ogawa Y, Tomeno W, Kato S, Mawatari H et al (2016) Resveratrol ameliorates fibrosis and inflammation in a mouse model of nonalcoholic steatohepatitis. Sci Rep 6:22251. https://doi.org/10.1038/srep22251
Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Lin JW, Chen RM (2010) Resveratrol protects against oxidized LDL-induced breakage of the blood–brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 140(12):2187–2192. https://doi.org/10.3945/jn.110.123505
Hu M, Liu B (2016) Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood–brain barrier in endothelial cells via AMPK activation. Korean J Physiol Pharmacol 20(4):325–332. https://doi.org/10.4196/kjpp.2016.20.4.325
Balasubramaniyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, Mookerjee RP, Jalan R (2012) Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 302(1):G145–G152. https://doi.org/10.1152/ajpgi.00097.2011
Wright G, Jalan R (2007) Ammonia and inflammation in the pathogenesis of hepatic encephalopathy: Pandora's box? Hepatology 46(2):291–294. https://doi.org/10.1002/hep.21843
Perez Tamayo R (1983) Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 3(1):112–120
Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67(4):259–279
Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24(1):95–102. https://doi.org/10.1007/s11011-008-9112-7
Bobermin LD, Souza DO, Goncalves CA, Quincozes-Santos A (2017) Resveratrol prevents ammonia-induced mitochondrial dysfunction and cellular redox imbalance in C6 astroglial cells. Nutr Neurosci 21:1–10. https://doi.org/10.1080/1028415X.2017.1284375
Bobermin LD, Hansel G, Scherer EB, Wyse AT, Souza DO, Quincozes-Santos A, Goncalves CA (2015) Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol in Vitro 29(8):2022–2029. https://doi.org/10.1016/j.tiv.2015.08.008
Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127(8):3136–3151. https://doi.org/10.1172/JCI91301
Dhanda S, Sandhir R (2017) Blood–brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0521-7
Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci U S A 106(6):1977–1982. https://doi.org/10.1073/pnas.0808698106
Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T (2007) Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 210(1):81–86. https://doi.org/10.1002/jcp.20823
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660. https://doi.org/10.1083/jcb.200302070
Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100(3):323–331
Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788
Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T et al (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141(2):397–408
Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142
Chen F, Ohashi N, Li W, Eckman C, Nguyen JH (2009) Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology 50(6):1914–1923. https://doi.org/10.1002/hep.23203
Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5(Suppl 1):S7–S20. https://doi.org/10.1016/j.jceh.2014.06.004
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016
McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45
Pozdeev VI, Lang E, Gorg B, Bidmon HJ, Shinde PV, Kircheis G, Herebian D, Pfeffer K et al (2017) TNFalpha induced up-regulation of Na(+),K(+),2Cl(−) cotransporter NKCC1 in hepatic ammonia clearance and cerebral ammonia toxicity. Sci Rep 7(1):7938. https://doi.org/10.1038/s41598-017-07640-8
Lv S, Song HL, Zhou Y, Li LX, Cui W, Wang W, Liu P (2010) Tumour necrosis factor-alpha affects blood–brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int 30(8):1198–1210. https://doi.org/10.1111/j.1478-3231.2010.02211.x
Rochfort KD, Collins LE, McLoughlin A, Cummins PM (2016) Tumour necrosis factor-alpha-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6. J Neurochem 136(3):564–572. https://doi.org/10.1111/jnc.13408
Didier N, Romero IA, Creminon C, Wijkhuisen A, Grassi J, Mabondzo A (2003) Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem 86(1):246–254
Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, Mani AR, Harry D et al (2007) Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45(6):1517–1526. https://doi.org/10.1002/hep.21599
Wright G, Shawcross D, Olde Damink SW, Jalan R (2007) Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis 22(3–4):375–388. https://doi.org/10.1007/s11011-007-9071-4
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35. https://doi.org/10.1038/s41698-017-0038-6
Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46(5):531–542. https://doi.org/10.1016/j.freeradbiomed.2008.11.008
Gonzalez-Mariscal L, Quiros M, Diaz-Coranguez M (2011) ZO proteins and redox-dependent processes. Antioxid Redox Signal 15(5):1235–1253. https://doi.org/10.1089/ars.2011.3913
Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981(1–2):193–200
Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22(3–4):219–234. https://doi.org/10.1007/s11011-007-9062-5
Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Asp Med 24(4–5):149–159
Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J (2016) Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 53(3):166–183. https://doi.org/10.3109/10408363.2015.1115820
Gu X, Cai Z, Cai M, Liu K, Liu D, Zhang Q, Tan J, Ma Q (2018) AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol-induced neurodegeneration by resveratrol. Mol Med Rep. https://doi.org/10.3892/mmr.2018.8482
Acknowledgements
This work was supported by the 5-year Ramalingaswami Re-entry Fellowship grant (102/IFD/SAN/22/2013-14) awarded to V.B. from the Department of Biotechnology (DBT), Government of India.
Author information
Authors and Affiliations
Contributions
V.B. designed the study; V.B. and M.S. conducted the study; V.B. and M.S. analyzed the data statistically; V.B. wrote and critically reviewed the manuscript; B.H.S. interpreted the histology and immunohistochemical findings.
Corresponding author
Ethics declarations
Conflict of Interest Statement
All the authors declare that there is no conflict of interest.
Language Certificate
The manuscript underwent proof read and plagiarism check prior submission to the Journal.
Institutional Review Board Statement
The study was reviewed and approved by the JIPMER Scientific Advisory Committee and Institutional Animal Ethics Committee.
Rights and permissions
About this article
Cite this article
Vairappan, B., Sundhar, M. & Srinivas, B.H. Resveratrol Restores Neuronal Tight Junction Proteins Through Correction of Ammonia and Inflammation in CCl4-Induced Cirrhotic Mice. Mol Neurobiol 56, 4718–4729 (2019). https://doi.org/10.1007/s12035-018-1389-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-018-1389-x