Skip to main content
Log in

Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pain affects both sensory and emotional aversive responses, often provoking depression and anxiety-related conditions when it becomes chronic. As the opioid receptors in the locus coeruleus (LC) have been implicated in pain, stress responses, and opioid drug effects, we explored the modifications to LC opioid neurotransmission in a chronic constriction injury (CCI) model of short- and long-term neuropathic pain (7 and 30 days after nerve injury). No significant changes were found after short-term CCI, yet after 30 days, CCI provoked an up-regulation of cAMP (cyclic 5′-adenosine monophosphate), pCREB (phosphorylated cAMP response element binding protein), protein kinase A, tyrosine hydroxylase, and electrical activity in the LC, as well as enhanced c-Fos expression. Acute mu opioid receptor desensitization was more intense in these animals, measured as the decline of the peak current caused by [Met5]-enkephalin and the reduction of forskolin-stimulated cAMP produced in response to DAMGO. Sustained morphine treatment did not markedly modify certain LC parameters in CCI-30d animals, such as [Met5]-enkephalin-induced potassium outward currents or burst activity and c-Fos rebound after naloxone precipitation, which may limit the development of some typical opioid drug-related adaptations. However, other phenomena were impaired by long-term CCI, including the reduction in forskolin-stimulated cAMP accumulation by DAMGO after naloxone precipitation in morphine dependent animals. Overall, this study suggests that long-term CCI leads to changes at the LC level that may contribute to the anxiodepressive phenotype that develops in these animals. Furthermore, opioid drugs produce complex adaptations in the LC in this model of chronic neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bair MJ, Robinson RL, Katon W, Kroenke K (2003) Depression and pain comorbidity: a literature review. Arch Intern Med 163(20):2433–2445. https://doi.org/10.1001/archinte.163.20.2433

    Article  PubMed  Google Scholar 

  2. Alba-Delgado C, Cebada-Aleu A, Mico JA, Berrocoso E (2016) Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: a comparative study with the chronic constriction injury model. Prog Neuro-Psychopharmacol Biol Psychiatry 71:45–56. https://doi.org/10.1016/j.pnpbp.2016.06.007

    Article  Google Scholar 

  3. Alba-Delgado C, Llorca-Torralba M, Horrillo I, Ortega JE, Mico JA, Sanchez-Blazquez P, Meana JJ, Berrocoso E (2013) Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry 73(1):54–62. https://doi.org/10.1016/j.biopsych.2012.06.033

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki T, Amata M, Sakaue G, Nishimura S, Inoue T, Shibata M, Mashimo T (2007) Experimental neuropathy in mice is associated with delayed behavioral changes related to anxiety and depression. Anesth Analg 104(6):1570–1577, table of contents. https://doi.org/10.1213/01.ane.0000261514.19946.66

    Article  PubMed  Google Scholar 

  5. Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF (2001) Role of endogenous opioid system in the regulation of the stress response. Prog Neuro-Psychopharmacol Biol Psychiatry 25(4):729–741. https://doi.org/10.1016/S0278-5846(01)00161-0

    Article  CAS  Google Scholar 

  6. Kanjhan R (1995) Opioids and pain. Clin Exp Pharmacol Physiol 22(6–7):397–403

    Article  CAS  Google Scholar 

  7. Christie MJ (1991) Mechanisms of opioid actions on neurons of the locus coeruleus. Prog Brain Res 88:197–205

    Article  CAS  Google Scholar 

  8. Van Bockstaele EJ, Colago EE, Cheng P, Moriwaki A, Uhl GR, Pickel VM (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci 16(16):5037–5048

    Article  Google Scholar 

  9. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84. https://doi.org/10.1016/S0165-0173(03)00143-7

    Article  PubMed  Google Scholar 

  10. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13(12):1526–1533. https://doi.org/10.1038/nn.2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E (2016) Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 338:93–113. https://doi.org/10.1016/j.neuroscience.2016.05.057

    Article  CAS  PubMed  Google Scholar 

  12. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87(3):605–620. https://doi.org/10.1016/j.neuron.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snyder K, Wang WW, Han R, McFadden K, Valentino RJ (2012) Corticotropin-releasing factor in the norepinephrine nucleus, locus coeruleus, facilitates behavioral flexibility. Neuropsychopharmacology 37(2):520–530. https://doi.org/10.1038/npp.2011.218

    Article  CAS  PubMed  Google Scholar 

  14. Tervo DGR, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY (2014) Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell 159(1):21–32. https://doi.org/10.1016/j.cell.2014.08.037

    Article  CAS  PubMed  Google Scholar 

  15. Valentino RJ, Van Bockstaele E (2008) Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 583(2–3):194–203. https://doi.org/10.1016/j.ejphar.2007.11.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A 111(10):3859–3864. https://doi.org/10.1073/pnas.1310025111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  Google Scholar 

  18. Pertovaara A (2006) Noradrenergic pain modulation. Prog Neurobiol 80(2):53–83. https://doi.org/10.1016/j.pneurobio.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  19. Hirschberg S, Li Y, Randall A, Kremer EJ, Pickering AE (2017) Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 6:e29808. https://doi.org/10.7554/eLife.29808

  20. Hughes SW, Hickey L, Hulse RP, Lumb BM, Pickering AE (2013) Endogenous analgesic action of the pontospinal noradrenergic system spatially restricts and temporally delays the progression of neuropathic pain following tibial nerve injury. Pain 154(9):1680–1690. https://doi.org/10.1016/j.pain.2013.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Llorca-Torralba M, Mico JA, Berrocoso E (2018) Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model. Prog Neuropsychopharmacol Biol Psychiatry 84 (Pt A) 84:257–266. https://doi.org/10.1016/j.pnpbp.2018.03.007

    Article  CAS  Google Scholar 

  22. Van Bockstaele EJ, Reyes BA, Valentino RJ (2010) The locus coeruleus: a key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 1314:162–174. https://doi.org/10.1016/j.brainres.2009.09.036

    Article  CAS  PubMed  Google Scholar 

  23. Mazei-Robison MS, Nestler EJ (2012) Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2(7):a012070. https://doi.org/10.1101/cshperspect.a012070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10(7):2308–2317

    Article  CAS  Google Scholar 

  25. Shaw-Lutchman TZ, Barrot M, Wallace T, Gilden L, Zachariou V, Impey S, Duman RS, Storm D et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22(9):3663–3672 doi:20026223

    Article  CAS  Google Scholar 

  26. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  CAS  PubMed  Google Scholar 

  27. Berrocoso E, De Benito MD, Mico JA (2007) Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats. Psychopharmacology 193(1):97–105. https://doi.org/10.1007/s00213-007-0761-8

    Article  CAS  PubMed  Google Scholar 

  28. Berrocoso E, Mico JA, Vitton O, Ladure P, Newman-Tancredi A, Depoortere R, Bardin L (2011) Evaluation of milnacipran, in comparison with amitriptyline, on cold and mechanical allodynia in a rat model of neuropathic pain. Eur J Pharmacol 655(1–3):46–51. https://doi.org/10.1016/j.ejphar.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  29. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111(4):409–419

    CAS  PubMed  Google Scholar 

  30. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121(1):66–72

    Article  CAS  Google Scholar 

  31. Pineda J, Torrecilla M, Martin-Ruiz R, Ugedo L (1998) Attenuation of withdrawal-induced hyperactivity of locus coeruleus neurones by inhibitors of nitric oxide synthase in morphine-dependent rats. Neuropharmacology 37(6):759–767

    Article  CAS  Google Scholar 

  32. Alba-Delgado C, Borges G, Sanchez-Blazquez P, Ortega JE, Horrillo I, Mico JA, Meana JJ, Neto F et al (2012) The function of alpha-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain. Psychopharmacology 221(1):53–65. https://doi.org/10.1007/s00213-011-2542-7

    Article  CAS  PubMed  Google Scholar 

  33. Berrocoso E, Mico JA, Ugedo L (2006) In vivo effect of tramadol on locus coeruleus neurons is mediated by alpha2-adrenoceptors and modulated by serotonin. Neuropharmacology 51(1):146–153. https://doi.org/10.1016/j.neuropharm.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  34. Cedarbaum JM, Aghajanian GK (1976) Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane. Brain Res 112(2):413–419

    Article  CAS  Google Scholar 

  35. Hirata H, Aston-Jones G (1994) A novel long-latency response of locus coeruleus neurons to noxious stimuli: mediation by peripheral C-fibers. J Neurophysiol 71(5):1752–1761. https://doi.org/10.1152/jn.1994.71.5.1752

    Article  CAS  PubMed  Google Scholar 

  36. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4(11):2877–2890

    Article  CAS  Google Scholar 

  37. Bruzos-Cidon C, Llamosas N, Ugedo L, Torrecilla M (2015) Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the Wistar Kyoto rat. Int J Neuropsychopharmacol 18(7):pyu122. https://doi.org/10.1093/ijnp/pyu122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT (2011) Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone. J Neurosci 31(12):4434–4443. https://doi.org/10.1523/JNEUROSCI.4874-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci U S A 92(16):7242–7246

    Article  CAS  Google Scholar 

  40. Valdizan EM, Diaz A, Pilar-Cuellar F, Lantero A, Mostany R, Villar AV, Laorden ML, Hurle MA (2012) Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord mu-opioid receptors to Galphaz protein subunits. Neuropharmacology 62(2):757–764. https://doi.org/10.1016/j.neuropharm.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  41. Bravo L, Mico JA, Rey-Brea R, Perez-Nievas B, Leza JC, Berrocoso E (2012) Depressive-like states heighten the aversion to painful stimuli in a rat model of comorbid chronic pain and depression. Anesthesiology 117(3):613–625. https://doi.org/10.1097/ALN.0b013e3182657b3e

    Article  CAS  PubMed  Google Scholar 

  42. Cambi F, Fung B, Chikaraishi D (1989) 5′ flanking DNA sequences direct cell-specific expression of rat tyrosine hydroxylase. J Neurochem 53(5):1656–1659. https://doi.org/10.1111/j.1471-4159.1989.tb08567.x

    Article  CAS  PubMed  Google Scholar 

  43. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ et al (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65(1):223–254. https://doi.org/10.1124/pr.112.005942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fiorillo CD, Williams JT (1996) Opioid desensitization: Interactions with G-protein-coupled receptors in the locus coeruleus. J Neurosci 16(4):1479–1485

    Article  CAS  Google Scholar 

  45. Duman RS, Tallman JF, Nestler EJ (1988) Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther 246(3):1033–1039

    CAS  PubMed  Google Scholar 

  46. Mostany R, Diaz A, Valdizan EM, Rodriguez-Munoz M, Garzon J, Hurle MA (2008) Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein subunits. Neuropharmacology 54(6):989–997. https://doi.org/10.1016/j.neuropharm.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  47. Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23(4):737–746

    Article  CAS  Google Scholar 

  48. Beckmann AM, Matsumoto I, Wilce PA (1995) Immediate early gene expression during morphine withdrawal. Neuropharmacology 34(9):1183–1189. https://doi.org/10.1016/0028-3908(95)00089-O

    Article  CAS  PubMed  Google Scholar 

  49. Georges F, Stinus L, Le Moine C (2000) Mapping of c-fos gene expression in the brain during morphine dependence and precipitated withdrawal, and phenotypic identification of the striatal neurons involved. Eur J Neurosci 12(12):4475–4486

    Article  CAS  Google Scholar 

  50. Martin TJ, Kim SA, Buechler NL, Porreca F, Eisenach JC (2007) Opioid self-administration in the nerve-injured rat: relevance of antiallodynic effects to drug consumption and effects of intrathecal analgesics. Anesthesiology 106(2):312–322

    Article  CAS  Google Scholar 

  51. Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77(5):713–725

    Article  Google Scholar 

  52. Guitart X, Thompson MA, Mirante CK, Greenberg ME, Nestler EJ (1992) Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. J Neurochem 58(3):1168–1171

    Article  CAS  Google Scholar 

  53. Arttamangkul S, Quillinan N, Low MJ, von Zastrow M, Pintar J, Williams JT (2008) Differential activation and trafficking of micro-opioid receptors in brain slices. Mol Pharmacol 74(4):972–979. https://doi.org/10.1124/mol.108.048512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bailey CP, Couch D, Johnson E, Griffiths K, Kelly E, Henderson G (2003) Mu-opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J Neurosci 23(33):10515–10520. https://doi.org/10.1523/JNEUROSCI.23-33-10515.2003

    Article  CAS  PubMed  Google Scholar 

  55. Virk MS, Williams JT (2008) Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol 73(4):1301–1308. https://doi.org/10.1124/mol.107.042952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruehl S, Chung OY, Burns JW, Diedrich L (2007) Trait anger expressiveness and pain-induced beta-endorphin release: support for the opioid dysfunction hypothesis. Pain 130(3):208–215. https://doi.org/10.1016/j.pain.2006.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zangen A, Herzberg U, Vogel Z, Yadid G (1998) Nociceptive stimulus induces release of endogenous beta-endorphin in the rat brain. Neuroscience 85(3):659–662

    Article  CAS  Google Scholar 

  58. Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293(5528):311–315. https://doi.org/10.1126/science.1060952

    Article  CAS  Google Scholar 

  59. Valentino RJ, Van Bockstaele E (2015) Endogenous opioids: the downside of opposing stress. Neurobiol Stress 1:23–32. https://doi.org/10.1016/j.ynstr.2014.09.006

    Article  PubMed  Google Scholar 

  60. Jongeling AC, Johns ME, Murphy AZ, Hammond DL (2009) Persistent inflammatory pain decreases the antinociceptive effects of the mu opioid receptor agonist DAMGO in the locus coeruleus of male rats. Neuropharmacology 56(6–7):1017–1026. https://doi.org/10.1016/j.neuropharm.2009.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kimura M, Suto T, Morado-Urbina CE, Peters CM, Eisenach JC, Hayashida K (2015) Impaired pain-evoked analgesia after nerve injury in rats reflects altered glutamate regulation in the locus coeruleus. Anesthesiology 123(4):899–908. https://doi.org/10.1097/ALN.0000000000000796

    Article  CAS  PubMed  Google Scholar 

  62. Rohampour K, Azizi H, Fathollahi Y, Semnanian S (2017) Peripheral nerve injury potentiates excitatory synaptic transmission in locus coeruleus neurons. Brain Res Bull 130:112–117. https://doi.org/10.1016/j.brainresbull.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  63. Emery PC, Wilson KG, Kowal J (2014) Major depressive disorder and sleep disturbance in patients with chronic pain. Pain Res Manag 19(1):35–41

    Article  Google Scholar 

  64. Crain SM, Shen KF (1996) Modulatory effects of Gs-coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21(11):1347–1351

    Article  CAS  Google Scholar 

  65. Cruciani RA, Dvorkin B, Morris SA, Crain SM, Makman MH (1993) Direct coupling of opioid receptors to both stimulatory and inhibitory guanine nucleotide-binding proteins in F-11 neuroblastoma-sensory neuron hybrid cells. Proc Natl Acad Sci U S A 90(7):3019–3023

    Article  CAS  Google Scholar 

  66. Liu JG, Anand KJ (2001) Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev 38(1–2):1–19

    Article  CAS  Google Scholar 

  67. Florin-Lechner SM, Druhan JP, Aston-Jones G, Valentino RJ (1996) Enhanced norepinephrine release in prefrontal cortex with burst stimulation of the locus coeruleus. Brain Res 742(1–2):89–97

    Article  CAS  Google Scholar 

  68. Schwarz LA, Luo L (2015) Organization of the locus coeruleus-norepinephrine system. Curr Biol 25(21):R1051–R1056. https://doi.org/10.1016/j.cub.2015.09.039

    Article  CAS  PubMed  Google Scholar 

  69. Uematsu A, Tan BZ, Ycu EA, Cuevas JS, Koivumaa J, Junyent F, Kremer EJ, Witten IB et al (2017) Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat Neurosci 20(11):1602–1611. https://doi.org/10.1038/nn.4642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Ms. Raquel Rey-Brea, Mr. José Antonio García Partida, Mr. Santiago Muñoz, and Ms. Paula Reyes Perez for their excellent technical assistance. This work is dedicated in memory of Elsa Valdizán, PhD.

Funding and Disclosure

This work was supported by Spain’s Ministerio de Economía y Competitividad, co-financed by “Fondo Europeo de Desarrollo Regional” FEDER “A way to build Europe” (SAF2015-68647-R, SAF2011-25020); the “Centro de Investigación Biomédica en Red de Salud Mental-CIBERSAM” (Spain, G18); the “Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía” (CTS-510, CTS-7748); the Basque Government (IT 747-13); “Fundación Progreso y Salud de la Junta de Andalucía (PI-0080-2017); Fundación Española del Dolor (PI2015-FED-007); and a 2015 NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (NARSAD 23982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Berrocoso.

Ethics declarations

Animal handling and all the procedures were carried out in accordance with the guidelines of the European Commission’s directive (2010/63/EC) and Spanish Law (RD 53/2013) regulating animal research. Furthermore, all the experimental protocols were approved by the Committee for Animal Experimentation at the University of Cadiz (Spain).

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorca-Torralba, M., Pilar-Cuéllar, F., Bravo, L. et al. Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Mol Neurobiol 56, 4135–4150 (2019). https://doi.org/10.1007/s12035-018-1361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1361-9

Keywords

Navigation