Skip to main content

Advertisement

Log in

Chronic Testosterone Increases Impulsivity and Influences the Transcriptional Activity of the Alpha-2A Adrenergic Receptor Signaling Pathway in Rat Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Testosterone is an anabolic androgenic steroid hormone involved in brain development, reproduction, and social behavior. Several studies have shown that testosterone can cause impulsivity in humans, which in turn, is linked with mood-related psychiatric disorders and higher risk of death by suicide. The mechanisms by which testosterone abuse influences impulsivity are unclear. The present study aims to understand how testosterone influences impulsivity in a rodent model both at behavioral and molecular levels. In this study, rats were either only gonadectomized or gonadectomized and injected with supraphysiological doses of testosterone. Their relative impulsivity levels were assessed using the go/no-go task. Serum level of testosterone was measured using ELISA. Transcript levels of alpha-2A adrenergic receptor (Adra2a), G proteins (stimulatory subunit-Gαs [Gnas], inhibitory subunit-G [Gnai1 and Gnai2]), and catalytic and regulatory subunits of protein kinase A (PKA) were examined using quantitative PCR (qPCR) in brain areas associated with limbic system (prefrontal cortex (PFC), hippocampus, and amygdala). The testosterone-treated (T) group showed significantly higher level of serum testosterone and displayed a lower go/no-go ratio, indicating greater impulsivity compared to the gonadectomized (GDX) group. The transcript levels Adra2a and Gαs genes and PKA subunits encoded by Prkar1a, Prkar1b, Prkar2a, and Prkaca genes were significantly upregulated in PFC of testosterone treated rats. The expression levels of these genes were not significantly altered in hippocampus. On the other hand, amygdala showed changes only in Gnas and Prkar2a. These results suggest that chronic testosterone influences impulsivity possibly via hyperactive alpha-2A adrenergic receptor-PKA signaling axis, specifically in the PFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anestis MD, Soberay KA, Gutierrez PM, Hernandez TD, Joiner TE (2014) Reconsidering the link between impulsivity and suicidal behavior. Personal Soc Psychol Rev 18(4):366–386. https://doi.org/10.1177/1088868314535988

    Article  Google Scholar 

  2. Kulacaoglu F, Kose S (2018) Singing under the impulsiveness: impulsivity in psychiatric disorders. Psychiat Clin Psych 28(2):205–210. https://doi.org/10.1080/24750573.2017.1410329

    Article  Google Scholar 

  3. Pompili M, Innamorati M, Forte A, Longo L, Mazzetta C, Erbuto D, Ricci F, Palermo M et al (2013) Insomnia as a predictor of high-lethality suicide attempts. Int J Clin Pract 67(12):1311–1316. https://doi.org/10.1111/ijcp.12211

    Article  CAS  PubMed  Google Scholar 

  4. Millner AJ, Lee MD, Hoyt K, Buckholtz JW, Auerbach RP, Nock MK (2018) Are suicide attempters more impulsive than suicide ideators? Gen Hosp Psychiatry. https://doi.org/10.1016/j.genhosppsych.2018.08.002

  5. Sebastian A, Jacob G, Lieb K, Tuscher O (2013) Impulsivity in borderline personality disorder: a matter of disturbed impulse control or a facet of emotional dysregulation? Curr Psychiat Rep 15(2):339

  6. Strakowski SM, Fleck DE, DelBello MP, Adler CM, Shear PK, McElroy SL, Keck PE Jr, Moss Q et al (2009) Characterizing impulsivity in mania. Bipolar Disord 11(1):41–51. https://doi.org/10.1111/j.1399-5618.2008.00658.x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rausch J, Gabel A, Nagy K, Kleindienst N, Herpertz SC, Bertsch K (2015) Increased testosterone levels and cortisol awakening responses in patients with borderline personality disorder: gender and trait aggressiveness matter. Psychoneuroendocrinology 55:116–127. https://doi.org/10.1016/j.psyneuen.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Coccaro EF, Beresford B, Minar P, Kaskow J, Geracioti T (2007) CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder. J Psychiatr Res 41(6):488–492. https://doi.org/10.1016/j.jpsychires.2006.04.009

    Article  PubMed  Google Scholar 

  9. Stefansson J, Chatzittofis A, Nordstrom P, Arver S, Asberg M, Jokinen J (2016) CSF and plasma testosterone in attempted suicide. Psychoneuroendocrinology 74:1–6. https://doi.org/10.1016/j.psyneuen.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  10. Romero-Martinez A, Lila M, Williams RK, Gonzalez-Bono E, Moya-Albiol L (2013) Skin conductance rises in preparation and recovery to psychosocial stress and its relationship with impulsivity and testosterone in intimate partner violence perpetrators. Int J Psychophysiol 90(3):329–333. https://doi.org/10.1016/j.ijpsycho.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  11. Aluja A, Garcia LF, Marti-Guiu M, Blanco E, Garcia O, Fibla J, Blanch A (2015) Interactions among impulsiveness, testosterone, sex hormone binding globulin and androgen receptor gene CAG repeat length. Physiol Behav 147:91–96. https://doi.org/10.1016/j.physbeh.2015.04.022

    Article  CAS  PubMed  Google Scholar 

  12. Peper JS, Mandl RC, Braams BR, de Water E, Heijboer AC, Koolschijn PC, Crone EA (2013) Delay discounting and frontostriatal fiber tracts: a combined DTI and MTR study on impulsive choices in healthy young adults. Cereb Cortex 23(7):1695–1702. https://doi.org/10.1093/cercor/bhs163

    Article  PubMed  Google Scholar 

  13. Stanton SJ, Liening SH, Schultheiss OC (2011) Testosterone is positively associated with risk taking in the Iowa gambling task. Horm Behav 59(2):252–256. https://doi.org/10.1016/j.yhbeh.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  14. Oberlander JG, Henderson LP (2012) The Sturm und Drang of anabolic steroid use: angst, anxiety, and aggression. Trends Neurosci 35(6):382–392. https://doi.org/10.1016/j.tins.2012.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Batrinos ML (2012) Testosterone and aggressive behavior in man. Int J Endocrinol Metab 10(3):563–568. https://doi.org/10.5812/ijem.3661

    Article  CAS  Google Scholar 

  16. Jupp B, Caprioli D, Saigal N, Reverte I, Shrestha S, Cumming P, Everitt BJ, Robbins TW et al (2013) Dopaminergic and GABA-ergic markers of impulsivity in rats: evidence for anatomical localisation in ventral striatum and prefrontal cortex. Eur J Neurosci 37(9):1519–1528. https://doi.org/10.1111/ejn.12146

    Article  PubMed  Google Scholar 

  17. Feja M, Koch M (2014) Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect delay-discounting in rats. Behav Brain Res 264:230–239. https://doi.org/10.1016/j.bbr.2014.02.013

    Article  PubMed  Google Scholar 

  18. Chandley MJ, Ordway GA (2012) Frontiers in Neuroscience, Noradrenergic dysfunction in depression and suicide. In: Dwivedi Y (ed) The Neurobiological basis of suicide. CRC Press/Taylor & Francis Llc., Boca Raton

    Google Scholar 

  19. Arnsten AF (2010) The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. Expert Rev Neurother 10(10):1595–1605. https://doi.org/10.1586/ern.10.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dwivedi Y, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2002) [3H]cAMP binding sites and protein kinase a activity in the prefrontal cortex of suicide victims. Am J Psychiatr 159(1):66–73. https://doi.org/10.1176/appi.ajp.159.1.66

    Article  PubMed  Google Scholar 

  21. PASd P-L (2009) Tratamento farmacológico da impulsividade e do comportamento agressivo. Rev Bras Psiquiatr 31:S58–S65

    Article  Google Scholar 

  22. Jain R, Katic A (2016) Current and investigational medication delivery systems for treating attention-deficit/hyperactivity disorder. Prim Care Companion CNS Disord 18 (4). doi:https://doi.org/10.4088/PCC.16r01979

  23. Ludwig B, Roy B, Dwivedi Y (2018) Role of HPA and the HPG axis interaction in testosterone-mediated learned helpless behavior. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1085-x

    Article  Google Scholar 

  24. Wood RI, Armstrong A, Fridkin V, Shah V, Najafi A, Jakowec M (2013) Roid rage in rats? Testosterone effects on aggressive motivation, impulsivity and tyrosine hydroxylase. Physiol Behav 110-111:6–12. https://doi.org/10.1016/j.physbeh.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  25. Cooper SE, Goings SP, Kim JY, Wood RI (2014) Testosterone enhances risk tolerance without altering motor impulsivity in male rats. Psychoneuroendocrinology 40:201–212. https://doi.org/10.1016/j.psyneuen.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Masaki D, Yokoyama C, Kinoshita S, Tsuchida H, Nakatomi Y, Yoshimoto K, Fukui K (2006) Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats. Psychopharmacology 189(2):249–258. https://doi.org/10.1007/s00213-006-0559-0

    Article  CAS  PubMed  Google Scholar 

  27. Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology 42(4):864–875. https://doi.org/10.1038/npp.2016.175

    Article  CAS  PubMed  Google Scholar 

  28. Timberlake M 2nd, Prall K, Roy B, Dwivedi Y (2018) Unfolded protein response and associated alterations in toll-like receptor expression and interaction in the hippocampus of restraint rats. Psychoneuroendocrinology 89:185–193. https://doi.org/10.1016/j.psyneuen.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  30. Fujisawa TX, Nishitani S, Ishii S, Shinohara K (2011) Differential modulation of impulsive behavior by loneliness and testosterone in adolescent females. Neuro Endocrinol Lett 32(6):836–840

    CAS  PubMed  Google Scholar 

  31. Svensson AI, Akesson P, Engel JA, Soderpalm B (2003) Testosterone treatment induces behavioral disinhibition in adult male rats. Pharmacol Biochem Behav 75(2):481–490

    Article  CAS  Google Scholar 

  32. Derntl B, Pintzinger N, Kryspin-Exner I, Schopf V (2014) The impact of sex hormone concentrations on decision-making in females and males. Front Neurosci 8:352. https://doi.org/10.3389/fnins.2014.00352

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ortner GR, Wibral M, Becker A, Dohmen T, Klingmuller D, Falk A, Weber B (2013) No evidence for an effect of testosterone administration on delay discounting in male university students. Psychoneuroendocrinology 38(9):1814–1818. https://doi.org/10.1016/j.psyneuen.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  34. Svensson AI (2010) The aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD) reduces disinhibitory behavior in intact adult male rats treated with a high dose of testosterone. Behav Brain Res 206(2):216–222. https://doi.org/10.1016/j.bbr.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  35. Nishitomi K, Yano K, Kobayashi M, Jino K, Kano T, Horiguchi N, Shinohara S, Hasegawa M (2018) Systemic administration of guanfacine improves food-motivated impulsive choice behavior primarily via direct stimulation of postsynaptic alpha2A-adrenergic receptors in rats. Behav Brain Res 345:21–29. https://doi.org/10.1016/j.bbr.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  36. Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10(7):2125–2138

    Article  CAS  Google Scholar 

  37. Escriba PV, Ozaita A, Garcia-Sevilla JA (2004) Increased mRNA expression of alpha2A-adrenoceptors, serotonin receptors and mu-opioid receptors in the brains of suicide victims. Neuropsychopharmacology 29(8):1512–1521. https://doi.org/10.1038/sj.npp.1300459

    Article  CAS  PubMed  Google Scholar 

  38. Pacheco MA, Stockmeier C, Meltzer HY, Overholser JC, Dilley GE, Jope RS (1996) Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 723(1–2):37–45

    Article  CAS  Google Scholar 

  39. Berg T (2014) β1-blockers lower norepinephrine release by inhibiting presynaptic, facilitating β1-adrenoceptors in normotensive and hypertensive rats. Front Neurol 5 (51). doi:https://doi.org/10.3389/fneur.2014.00051

  40. Woolfrey KM, Dell'Acqua ML (2015) Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem 290(48):28604–28612. https://doi.org/10.1074/jbc.R115.657262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dagda RK, Das Banerjee T (2015) Role of protein kinase a in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev Neurosci 26(3):359–370. https://doi.org/10.1515/revneuro-2014-0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dwivedi Y, Mondal AC, Shukla PK, Rizavi HS, Lyons J (2004) Altered protein kinase a in brain of learned helpless rats: effects of acute and repeated stress. Biol Psychiatry 56(1):30–40. https://doi.org/10.1016/j.biopsych.2004.03.018

    Article  CAS  PubMed  Google Scholar 

  43. Dwivedi Y, Pandey GN (2008) Adenylyl cyclase-cyclicAMP signaling in mood disorders: role of the crucial phosphorylating enzyme protein kinase a. Neuropsychiatr Dis Treat 4(1):161–176

    Article  CAS  Google Scholar 

  44. Dwivedi Y, Pandey GN (2000) Adrenal glucocorticoids modulate [3H]cyclic AMP binding to protein kinase a (PKA), cyclic AMP-dependent PKA activity, and protein levels of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J Pharmacol Exp Ther 294(1):103–116

    CAS  PubMed  Google Scholar 

  45. Wang C, Li YJ, Cao JM (2013) Specificity out of clutter: a hypothetical role of G protein-coupled receptors in the non-genomic effect of steroids. FEBS Lett 587(7):823–825. https://doi.org/10.1016/j.febslet.2013.02.025

    Article  CAS  PubMed  Google Scholar 

  46. Nag S, Mokha SS (2009) Testosterone is essential for α(2)-adrenoceptor-induced antinociception in the trigeminal region of the male rat. Neurosci Lett 467(1):48–52. https://doi.org/10.1016/j.neulet.2009.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramos BP, Arnsten AFT (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113(3):523–536. https://doi.org/10.1016/j.pharmthera.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  48. Carré JM, Geniole SN, Ortiz TL, Bird BM, Videto A, Bonin PL (2017) Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biol Psychiatry 82(4):249–256. https://doi.org/10.1016/j.biopsych.2016.06.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Kevin Prall and Lauren Allen for technical assistance.

Funding

The research was supported by grants from the National Institute of Mental Health (R01MH082802, 1R01MH101890, R01MH100616, 1R01MH107183-01) to Dr. Dwivedi. The sponsoring agency had no role in study design, collection, analysis, interpretation of data, and in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Dwivedi.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, J., Ludwig, B., Roy, B. et al. Chronic Testosterone Increases Impulsivity and Influences the Transcriptional Activity of the Alpha-2A Adrenergic Receptor Signaling Pathway in Rat Brain. Mol Neurobiol 56, 4061–4071 (2019). https://doi.org/10.1007/s12035-018-1350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1350-z

Keywords

Navigation