Kinesins: Motor Proteins as Novel Target for the Treatment of Chronic Pain

  • P. A. Shantanu
  • Dilip Sharma
  • Monika Sharma
  • Shivani Vaidya
  • Kuhu Sharma
  • Kiran Kalia
  • Yuan-Xiang Tao
  • Amit Shard
  • Vinod Tiwari


Kinesins are one of the neoteric and efficacious targets recently reported to play an important role in the initiation and progression of chronic pain. Kinesins are anterograde microtubule-based motor proteins that are involved in trafficking of receptors including nociceptors and progression of pain. The specific kinesin and regulatory proteins interplay is crucial for the delivery of nociceptors to the synapse. If this complex and less understood interplay is inhibited, it may result in a decrease in central sensitization, and thus attenuation of pain. This review is focused on the transportation process of receptors/cargos, the role of regulatory proteins influencing the respective kinesin, and their relationship with chronic pain. The review also features specific strategies adopted by researchers for targeting kinesin and chronic pain. Considering the recent preclinical success of kinesin inhibition in pain, it is expected that inhibitors for kinesin or enzymes responsible for kinesin activation could be developed or repurposed as alternative, safe, and potential therapies for the treatment of chronic pain.


Bone cancer pain Calcium calmodulin kinase 2 Cyclin-dependent kinesins KIF13B KIF17 NMDA, pain Sodium channels TRPV1 



The authors wish to express their thanks to Prof. D.K. Singh for his editorial contribution and to the Director, NIPER Ahmedabad for providing necessary facilities and infrastructure.


This work is supported by Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt of India, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India and Department of Science and Technology (DST), Government of India, Early Career Research Grant (ECR/2016/001846) awarded to Dr. Vinod Tiwari and by NIH grants (R01NS094664, R01NS094224, and R01DA033390) for Yuan-Xiang Tao.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kamerman PR, Wadley AL, Davis K, Hietaharju A, Jain P, Kopf A, Meyer A-C, Raja SN et al (2015) World Health Organization (WHO) essential medicines lists: where are the drugs to treat neuropathic pain? Pain 156:793–797CrossRefGoogle Scholar
  2. 2.
    Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457CrossRefGoogle Scholar
  3. 3.
    Tiwari V, Yang F, He SQ, Shechter R, Zhang C, Shu B, Zhang T, Tiwari V et al (2016) Activation of peripheral μ-opioid receptors by Dermorphin [D-Arg2, Lys4] (1-4) amide leads to modality-preferred inhibition of neuropathic pain. Anesthesiology 124(3):706–720CrossRefGoogle Scholar
  4. 4.
    Vlaeyen JW, Linton SJ (2012) Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain 153:1144–1147CrossRefGoogle Scholar
  5. 5.
    Belvisi MG (2003) Sensory nerves and airway inflammation: role of Aδ and C-fibres. Pulm Pharmacol Ther 16:1–7CrossRefGoogle Scholar
  6. 6.
    Craig A (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30CrossRefGoogle Scholar
  7. 7.
    Cook SP, Vulchanova L, Hargreaves KM, Elde R, Mccleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387:505–508CrossRefGoogle Scholar
  8. 8.
    Mckemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16CrossRefGoogle Scholar
  9. 9.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JNP (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981CrossRefGoogle Scholar
  10. 10.
    Coutaux A, Adam F, Willer J-C, Le Bars D (2005) Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 72:359–371CrossRefGoogle Scholar
  11. 11.
    Woolf CJ (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1768CrossRefGoogle Scholar
  12. 12.
    Woolf CJ, Chong M-S (1993) Preemptive analgesia-treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 77:362–379CrossRefGoogle Scholar
  13. 13.
    Hirokawa N, Takemura R (2003) Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci 28:558–565CrossRefGoogle Scholar
  14. 14.
    Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696CrossRefGoogle Scholar
  15. 15.
    Sablin EP, Case RB, Dai SC, Hart CL, Ruby A, Vale RD, Fletterick RJ (1998) Direction determination in the minus-end-directed kinesin motor ncd. Nature 395:813–816CrossRefGoogle Scholar
  16. 16.
    Pollard TD, Goldman RD (2017) The Cytoskeleton. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  17. 17.
    Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111:2477–2486PubMedGoogle Scholar
  18. 18.
    Squire J, Parry DA (2005) Fibrous proteins: muscle and molecular motors. Gulf Professional Publishing, HoustonGoogle Scholar
  19. 68.
    Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M assembly. Curr Biol 19:1703–1711Google Scholar
  20. 19.
    Imanishi M, Endres NF, Gennerich A Vale, RD (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J. Cell Biol, 174:931–937CrossRefGoogle Scholar
  21. 20.
    Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y, Jih GT, Meyhofer E, Verhey KJ (2009a) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7:e1000072CrossRefGoogle Scholar
  22. 21.
    Lwin KM, Li D, Bretscher A (2016) Kinesin-related Smy1 enhances the Rab-dependent association of myosin-V with secretory cargo. Mol Biol Cell 27:2450–2462CrossRefGoogle Scholar
  23. 22.
    Twelvetrees AE, Pernigo S, Sanger A, Guedes-Dias P, Schiavo G, Steiner RA, Dodding MP, Holzbaur EL (2016) The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. Neuron 90:1000–1015CrossRefGoogle Scholar
  24. 23.
    Karcher RL, Deacon SW, Gelfand VI (2002) Motor–cargo interactions: the key to transport specificity. Trends Cell Biol 12:21–27CrossRefGoogle Scholar
  25. 24.
    Akhmanova A, Hammer JA (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22:479–487CrossRefGoogle Scholar
  26. 25.
    Berk A, Zipursky S, Lodish H (2000) Molecular cell biology 4th edn. National Center for Biotechnology InformationÕs BookshelfGoogle Scholar
  27. 26.
    Ren B-X, Gu X-P, Zheng Y-G, Liu C-L, Wang D, Sun Y-E, Ma Z-L (2012) Intrathecal injection of metabotropic glutamate receptor subtype 3 and 5 agonist/antagonist attenuates bone cancer pain by inhibition of spinal astrocyte activation in a mouse model. Anesthesiology 116:122–132CrossRefGoogle Scholar
  28. 27.
    Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777CrossRefGoogle Scholar
  29. 28.
    Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970CrossRefGoogle Scholar
  30. 29.
    Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y (2001) UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron, 32:(5)787–800CrossRefGoogle Scholar
  31. 30.
    Cavalli V, Kujala P, Klumperman J, Goldstein LS (2005) Sunday Driver links axonal transport to damage signaling. J Cell Biol 168:775–787CrossRefGoogle Scholar
  32. 31.
    Cai D, Mcewen DP, Martens JR, Meyhofer E, Verhey KJ (2009) Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 7:e1000216CrossRefGoogle Scholar
  33. 32.
    Dunn S, Morrison EE, Liverpool TB, Molina-París C, Cross RA, Alonso MC, Peckham M (2008) Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 121:1085–1095CrossRefGoogle Scholar
  34. 33.
    Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567CrossRefGoogle Scholar
  35. 34.
    Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172CrossRefGoogle Scholar
  36. 35.
    Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K et al (2007) Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci 104:3213–3218CrossRefGoogle Scholar
  37. 36.
    Rinaldi F, Bassi MT, Todeschini A, Rota S, Arnoldi A, Padovani A, Filosto M (2015) A novel mutation in motor domain of KIF5A associated with an HSP/axonal neuropathy phenotype. J Clin Neuromuscul Dis 16:153–158CrossRefGoogle Scholar
  38. 37.
    Su Y-Y, Ye M, Li L, Liu C, Pan J, Liu W-W, Jiang Y, Jiang X-Y et al (2013a) KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1. 8. J Neurosci 33:17884–17896CrossRefGoogle Scholar
  39. 38.
    Wang N, Xu J (2015a) Functions of kinesin superfamily proteins in neuroreceptor trafficking. Biomed Res Int 2015:639301PubMedPubMedCentralGoogle Scholar
  40. 39.
    Liu M, Liu Y, Hou B, Bu D, Shi L, Gu X, Ma Z (2015b) Kinesin superfamily protein 17 contributes to the development of bone cancer pain by participating in NR2B transport in the spinal cord of mice. Oncol Rep 33:1365–1371CrossRefGoogle Scholar
  41. 40.
    Bo J, Zhang W, Sun X, Yang Y, Liu X, Jiang M, Ma Z, Gu X (2014) The cyclic AMP response element-binding protein antisense oligonucleotide induced anti-nociception and decreased the expression of KIF17 in spinal cord after peripheral nerve injury in mice. Int J Clin Exp Med 7:5181–5191PubMedPubMedCentralGoogle Scholar
  42. 41.
    Dilley A, Richards N, Pulman KG, Bove GM (2013) Disruption of fast axonal transport in the rat induces behavioral changes consistent with neuropathic pain. J Pain 14:1437–1449CrossRefGoogle Scholar
  43. 42.
    Ni K, Zhou Y, Sun YE, Liu Y, Gu XP, Ma ZL (2014) Intrathecal injection of selected peptide Myr-RC-13 attenuates bone cancer pain by inhibiting KIF17 and NR2B expression. Pharmacol Biochem Behav 122:228–233CrossRefGoogle Scholar
  44. 43.
    Liu Y, Liang Y, Hou B, Liu M, Yang X, Liu C, Zhang J, Zhang W et al (2014) The inhibitor of calcium/calmodulin-dependent protein kinase II KN93 attenuates bone cancer pain via inhibition of KIF17/NR2B trafficking in mice. Pharmacol Biochem Behav 124:19–26CrossRefGoogle Scholar
  45. 44.
    Xing B-M, Yang Y-R, Du J-X, Chen H-J, Qi C, Huang Z-H, Zhang Y, Wang Y (2012a) Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci 32:14709–14721CrossRefGoogle Scholar
  46. 45.
    Liu J, Du J, Yang Y, Wang Y (2015a) Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 273:253–262CrossRefGoogle Scholar
  47. 46.
    Yin X, Takei Y, Kido MA, Hirokawa N (2011) Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron 70:310–325CrossRefGoogle Scholar
  48. 47.
    Brüggemann I, Schulz S, Wiborny D, Höllt V (2000) Colocalization of the mu-opioid receptor and calcium/calmodulin-dependent kinase II in distinct pain-processing brain regions. Brain Res Mol Brain Res 85(1–2):239–250CrossRefGoogle Scholar
  49. 48.
    Carlton SM (2002) Localization of CaMKIIalpha in rat primary sensory neurons: increase in inflammation. Brain Res 947(2):252–259CrossRefGoogle Scholar
  50. 49.
    Caterina MJ, Leffler A, Malmberg A, Martin W, Trafton J, Petersen-Zeitz K, Koltzenburg M, Basbaum A et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313CrossRefGoogle Scholar
  51. 50.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824CrossRefGoogle Scholar
  52. 51.
    Camprubi-Robles M, Planells-Cases R, Ferrer-Montiel A (2009) Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J 23:3722–3733CrossRefGoogle Scholar
  53. 52.
    Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672CrossRefGoogle Scholar
  54. 53.
    Xu Y, Zhang F, Su Z, Mcnew JA, Shin YK (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12:417–422CrossRefGoogle Scholar
  55. 54.
    Züchner S, Vance JM (2006) Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat Rev Neurol 2:45CrossRefGoogle Scholar
  56. 55.
    Vallat J-M, Tazir M, Magdelaine C, Sturtz F, Grid D (2005) Autosomal-recessive Charcot-Marie-Tooth diseases. J Neuropathol Exp Neurol 64:363–370CrossRefGoogle Scholar
  57. 56.
    Manganelli F, Tozza S, Pisciotta C, Bellone E, Iodice R, Nolano M, Geroldi A, Capponi S et al (2014) Charcot-Marie-Tooth disease: frequency of genetic subtypes in a Southern Italy population. J Peripher Nerv Syst 19:292–298CrossRefGoogle Scholar
  58. 57.
    Crimella C, Baschirotto C, Arnoldi A, Tonelli A, Tenderini E, Airoldi G, Martinuzzi A, Trabacca A et al (2012) Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2. Clin Genet 82(2):157–164CrossRefGoogle Scholar
  59. 58.
    López E, Casasnovas C, Giménez J, Santamaría R, Jm TERRAZAS, Volpini V (2015) Identification of two novel KIF5A mutations in hereditary spastic paraplegia associated with mild peripheral neuropathy. J Neurol Sci 358(1–2):422–427CrossRefGoogle Scholar
  60. 59.
    Levinson SR, Luo S, Henry MA (2012) The role of sodium channels in chronic pain. Muscle Nerve 46(2):155–165CrossRefGoogle Scholar
  61. 60.
    Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain, 85:(1-2)41–50CrossRefGoogle Scholar
  62. 61.
    Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68:(4)610–638CrossRefGoogle Scholar
  63. 62.
    Purcell JW, Davis J, Reddy M, Martin S, Samayoa K, Vo H, Thomsen K, Bean P et al (2010) Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res 16:566–576CrossRefGoogle Scholar
  64. 63.
    Guillaud L, Setou M, Hirokawa N (2003) KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J Neurosci 23:131–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)-AhmedabadGandhinagarIndia
  2. 2.Neurosicience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouChina
  3. 3.Department of Anesthesiology, New Jersey Medical School, RutgersThe State University of New JerseyNewarkUSA
  4. 4.Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)-AhmedabadGandhinagarIndia

Personalised recommendations