Advertisement

Molecular Neurobiology

, Volume 56, Issue 5, pp 3368–3379 | Cite as

Degradation of Caytaxin Causes Learning and Memory Deficits via Activation of DAPK1 in Aging

  • Yu Guo
  • Hao Li
  • Xiao Ke
  • Manfei Deng
  • Zhuoze Wu
  • You Cai
  • Henok Kessete Afewerky
  • Xiaoan Zhang
  • Lei PeiEmail author
  • Youming LuEmail author
Article
  • 384 Downloads

Abstract

Loss of memory is an inevitable clinic sign in aging, but its underlying mechanisms remain unclear. Here we show that death-associated protein kinase (DAPK1) is involved in the decays of learning and memory in aging via degradation of Caytaxin, a brain-specific member of BNIP-2. DAPK1 becomes activated in the hippocampus of mice during aging. Activation of DAPK1 is closely associated with degradation of Caytaxin protein. Silencing Caytaxin by the expression of small interfering RNA (siRNA) that targets specifically to Caytaxin in the hippocampus of adult mice impairs the learning and memory. Genetic inactivation of DAPK1 by deletion of DAPK1 kinase domain prevents the degradation of Caytaxin and protects against learning and memory declines. Thus, activation of DAPK1 impairs learning and memory by degrading Caytaxin during aging.

Keywords

DAPK1 Caytaxin Aging Learning and memory 

Abbreviations

DAPK1

death-associated protein kinase 1

D-GAL

D-galactose

LTP

long-term potentiation

LV

lentivirus

mEPSC

miniature excitatory post synaptic current

Notes

Author Contributions

YL and LP conceived and designed the studies and wrote the paper. YG and HL carried out the experiments including western blot, qPCR, and mutagenesis and virus construction and behavioral studies. XK and MD performed electrophysiological studies and immunohistochemistry. YC, ZW, HKA, and XZ performed the experiments including genotyping, PCR, and animal breeding. All authors contributed to the data analysis and presentation in the paper.

Funding Information

This project was supported by the National Natural Science Foundation of China (Grant No. 31721002 to YL; 91632306 to YL; 51627807 to YL; 81571078 to LP) and the Medjaden Academy & Research Foundation for Young Scientists (Grant No. MJR20160057).

Compliance with Ethical Standards

All mice used in this study were bred and reared in the same conditions in accordance with institutional guidelines of the Animal Care and Use Committee (Huazhong University of Science and Technology, Wuhan, China) within the University’ s animal care facility.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kowald A (2002) Lifespan does not measure ageing. Biogerontology 3(3):187–190CrossRefGoogle Scholar
  2. 2.
    Campos PB, Paulsen BS, Rehen SK (2014) Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species. Front Aging Neurosci 6:292.  https://doi.org/10.3389/fnagi.2014.00292 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Harman D (1998) Aging: phenomena and theories. Ann N Y Acad Sci 854:1–7CrossRefGoogle Scholar
  4. 4.
    Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L (2012) Memory aging and brain maintenance. Trends Cogn Sci 16(5):292–305.  https://doi.org/10.1016/j.tics.2012.04.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Konar A, Singh P, Thakur MK (2016) Age-associated cognitive decline: insights into molecular switches and recovery avenues. Aging and Disease 7(2):121–129.  https://doi.org/10.14336/AD.2015.1004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19(4):504–522.  https://doi.org/10.1007/s11065-009-9119-9 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435.  https://doi.org/10.1038/nm.4000 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK (2015) Cellular senescence and the aging brain. Exp Gerontol 68:3–7.  https://doi.org/10.1016/j.exger.2014.09.018 CrossRefPubMedGoogle Scholar
  9. 9.
    Bomar JM, Benke PJ, Slattery EL, Puttagunta R, Taylor LP, Seong E, Nystuen A, Chen W et al (2003) Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet 35(3):264–269.  https://doi.org/10.1038/ng1255 CrossRefPubMedGoogle Scholar
  10. 10.
    LeDoux MS (2011) Animal models of dystonia: lessons from a mutant rat. Neurobiol Dis 42(2):152–161.  https://doi.org/10.1016/j.nbd.2010.11.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao J, Gong S, Ledoux MS (2007) Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. Neuroscience 144(2):439–461.  https://doi.org/10.1016/j.neuroscience.2006.09.042 CrossRefPubMedGoogle Scholar
  12. 12.
    Hayakawa Y, Itoh M, Yamada A, Mitsuda T, Nakagawa T (2007) Expression and localization of Cayman ataxia-related protein, Caytaxin, is regulated in a developmental- and spatial-dependent manner. Brain Res 1129(1):100–109.  https://doi.org/10.1016/j.brainres.2006.10.068 CrossRefPubMedGoogle Scholar
  13. 13.
    Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210.  https://doi.org/10.1146/annurev.biochem.75.103004.142615 CrossRefPubMedGoogle Scholar
  14. 14.
    Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234.  https://doi.org/10.1016/j.cell.2009.12.055 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, Kimchi A (1999) DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146(1):141–148CrossRefGoogle Scholar
  16. 16.
    Jin Y, Gallagher PJ (2003) Antisense depletion of death-associated protein kinase promotes apoptosis. J Biol Chem 278(51):51587–51593.  https://doi.org/10.1074/jbc.M309165200 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3(1):1–7.  https://doi.org/10.1038/35050500 CrossRefPubMedGoogle Scholar
  18. 18.
    Parameshwaran K, Irwin MH, Steliou K, Pinkert CA (2010) D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice. Rejuvenation Res 13(6):729–735.  https://doi.org/10.1089/rej.2010.1020 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carlson DA, Franke AS, Weitzel DH, Speer BL, Hughes PF, Hagerty L, Fortner CN, Veal JM et al (2013) Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 8(12):2715–2723.  https://doi.org/10.1021/cb400407c CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Itoh M, Li S, Ohta K, Yamada A, Hayakawa-Yano Y, Ueda M, Hida Y, Suzuki Y et al (2011) Cayman ataxia-related protein is a presynapse-specific caspase-3 substrate. Neurochem Res 36(7):1304–1313.  https://doi.org/10.1007/s11064-011-0430-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Bettio LEB, Rajendran L, Gil-Mohapel J (2017) The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 79:66–86.  https://doi.org/10.1016/j.neubiorev.2017.04.030 CrossRefPubMedGoogle Scholar
  22. 22.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529–535.  https://doi.org/10.1038/nature08983 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Morrison JH, Hof PR (2002) Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease. Prog Brain Res 136:467–486CrossRefGoogle Scholar
  24. 24.
    Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE (1995) Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol 45(3):223–252.  https://doi.org/10.1016/0301-0082(94)00047-l CrossRefPubMedGoogle Scholar
  25. 25.
    Geinisman Y, Ganeshina O, Yoshida R, Berry RW, Disterhoft JF, Gallagher M (2004) Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging 25(3):407–416.  https://doi.org/10.1016/j.neurobiolaging.2003.12.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 9(5–6):453–463CrossRefGoogle Scholar
  27. 27.
    Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402CrossRefGoogle Scholar
  28. 28.
    Yamamoto M, Takahashi H, Nakamura T (1999) Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res 5(58):674–683CrossRefGoogle Scholar
  29. 29.
    Sakagami H, Kondo H (1997) Molecular cloning and developmental expression of a rat homologue of death-associated protein kinase in the nervous system. Mol Brain Res 2(52):249–256CrossRefGoogle Scholar
  30. 30.
    Shu S, Zhu H, Tang N, Chen W, Li X, Li H, Pei L, Liu D et al (2016) Selective degeneration of entorhinal-CA1 synapses in Alzheimer’s disease via activation of DAPK1. J Neurosci Off J Soc Neurosci 36(42):10843–10852.  https://doi.org/10.1523/JNEUROSCI.2258-16.2016 CrossRefGoogle Scholar
  31. 31.
    Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186.  https://doi.org/10.1038/nature20411 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344(8925):769–772CrossRefGoogle Scholar
  33. 33.
    Sikora KM, Nosavanh LM, Kantheti P, Burmeister M, Hortsch M (2012) Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity. PLoS One 7(11):e50570.  https://doi.org/10.1371/journal.pone.0050570 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Buschdorf JP, Chew LL, Soh UJ, Liou YC, Low BC (2008) Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons. PLoS One 3(7):e2686.  https://doi.org/10.1371/journal.pone.0002686 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Buschdorf JP, Li Chew L, Zhang B, Cao Q, Liang FY, Liou YC, Zhou YT, Low BC (2006) Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels. J Cell Sci 119(Pt 16):3337–3350.  https://doi.org/10.1242/jcs.03061 CrossRefPubMedGoogle Scholar
  36. 36.
    Kang JS, Bae GU, Yi MJ, Yang YJ, Oh JE, Takaesu G, Zhou YT, Low BC et al (2008) A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38alpha/beta MAPK activity and myogenic differentiation. J Cell Biol 182(3):497–507.  https://doi.org/10.1083/jcb.200801119 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McEntee WJ, Crook TH (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 111(4):391–401CrossRefGoogle Scholar
  38. 38.
    Brodsky VY, Malchenko LA, Butorina NN, Lazarev Konchenko DS, Zvezdina ND, Dubovaya TK (2017) Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats. Biochemistry Biokhimiia 82(8):957–961.  https://doi.org/10.1134/S0006297917080119 CrossRefPubMedGoogle Scholar
  39. 39.
    Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136.  https://doi.org/10.1016/j.neuroscience.2008.01.061 CrossRefPubMedGoogle Scholar
  40. 40.
    Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. BioFactors 38(3):186–193.  https://doi.org/10.1002/biof.1012 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33.  https://doi.org/10.3389/fnagi.2013.00033 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bialik S, Kimchi A (2014) The DAP-kinase interactome. Apoptosis: an international journal on programmed cell death 19(2):316–328.  https://doi.org/10.1007/s10495-013-0926-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.The Institute for Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Pathology and Pathophysiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.Department of Neurobiology, School of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations