Abstract
Despite the extensive research effort that has been made in the field, motor neuron diseases, namely, amyotrophic lateral sclerosis and spinal muscular atrophies, still represent an overwhelming cause of morbidity and mortality worldwide. Exogenous neural stem cell-based transplantation approaches have been investigated as multifaceted strategies to both protect and repair upper and lower motor neurons from degeneration and inflammation. Transplanted neural stem cells (NSCs) exert their beneficial effects not only through the replacement of damaged cells but also via bystander immunomodulatory and neurotrophic actions. Notwithstanding these promising findings, the clinical translatability of such techniques is jeopardized by the limited engraftment success and survival of transplanted cells within the hostile disease microenvironment. To overcome this obstacle, different methods to enhance graft survival, stability, and therapeutic potential have been developed, including environmental stress preconditioning, biopolymers scaffolds, and genetic engineering. In this review, we discuss current engineering techniques aimed at the exploitation of the migratory, proliferative, and secretive capacity of NSCs and their relevance for the therapeutic arsenal against motor neuron disorders and other neurological disorders.
Similar content being viewed by others
Abbreviations
- ALS:
-
amyotrophic lateral sclerosis
- BDNF:
-
brain-derived neurotrophic factor
- CNS:
-
central nervous system
- GDNF:
-
glial-derived neurotrophic factor
- HMGB1:
-
high-mobility group box 1
- IPSC:
-
induced pluripotent stem cell
- MHC:
-
major histocompatibility complex
- MND:
-
motor neuron disorder
- NGF:
-
nerve growth factor
- NPC:
-
neural progenitor cell
- NSC:
-
neural stem cell
- SMA:
-
spinal muscular atrophy
- SMARD1:
-
spinal muscular atrophy with respiratory distress type 1
- VEGF:
-
vascular endothelial growth facto
References
Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Publ Gr 3:17085. https://doi.org/10.1038/nrdp.2017.85
Lacomblez L, Bensimon G, Leigh PN, et al (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet (London, England) 347:1425–31
Abe K, Aoki M, Tsuji S, Itoyama Y, Sobue G, Togo M, Hamada C, Tanaka M et al (2017) Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16:505–512. https://doi.org/10.1016/S1474-4422(17)30115-1
Parente V, Corti S (2018) Advances in spinal muscular atrophy therapeutics. Ther Adv Neurol Disord 11:175628561875450. https://doi.org/10.1177/1756285618754501
Chen KS, Sakowski SA, Feldman EL (2016) Intraspinal stem cell transplantation for amyotrophic lateral sclerosis. Ann Neurol 79:342–353. https://doi.org/10.1002/ana.24584
Gilbert SF (2000) Developmental biology. Sinauer Associates
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335
Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768–5773
Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160
Patzke N, Spocter MA, Karlsson KÆ, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C et al (2015) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220:361–383. https://doi.org/10.1007/s00429-013-0660-1
Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495. https://doi.org/10.1038/386493a0
Hill AS, Sahay A, Hen R (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40:2368–2378. https://doi.org/10.1038/npp.2015.85
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. https://doi.org/10.1038/3305
Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381. https://doi.org/10.1038/nature25975
Boldrini M, Fulmore CA, Tartt AN, et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22:589–599.e5. doi: https://doi.org/10.1016/j.stem.2018.03.015
Sabelström H, Stenudd M, Frisén J (2014) Neural stem cells in the adult spinal cord. Exp Neurol 260:44–49. https://doi.org/10.1016/j.expneurol.2013.01.026
Liu Z, Martin LJ (2006) The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain. J Comp Neurol 497:468–488. https://doi.org/10.1002/cne.21012
Chi L, Gan L, Luo C, Lien L, Liu R (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev 16:579–588. https://doi.org/10.1089/scd.2006.0120
Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28:545–554. https://doi.org/10.1002/stem.306
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970. https://doi.org/10.1038/nm747
Khodanovich M, Kisel A, Kudabaeva M, Chernysheva G, Smolyakova V, Krutenkova E, Wasserlauf I, Plotnikov M et al (2018) Effects of fluoxetine on hippocampal neurogenesis and neuroprotection in the model of global cerebral ischemia in rats. Int J Mol Sci 19:162. https://doi.org/10.3390/ijms19010162
Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, Zhang C, Lu M et al (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751. https://doi.org/10.1002/ana.10555
Corbett AM, Sieber S, Wyatt N, Lizzi J, Flannery T, Sibbit B, Sanghvi S (2015) Increasing neurogenesis with fluoxetine, simvastatin and ascorbic acid leads to functional recovery in ischemic stroke. Recent Pat Drug Deliv Formul 9:158–166
Dametti S, Faravelli I, Ruggieri M, Ramirez A, Nizzardo M, Corti S (2016) Experimental advances towards neural regeneration from induced stem cells to direct in vivo reprogramming. Mol Neurobiol 53:2124–2131. https://doi.org/10.1007/s12035-015-9181-7
Faravelli I, Riboldi G, Nizzardo M, Simone C, Zanetta C, Bresolin N, Comi GP, Corti S (2014) Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 71:3257–3268. https://doi.org/10.1007/s00018-014-1613-4
Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C et al (2014) Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 23:342–354. https://doi.org/10.1093/hmg/ddt425
Nizzardo M, Bucchia M, Ramirez A, Trombetta E, Bresolin N, Comi GP, Corti S (2016) iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models. Hum Mol Genet 25:3152–3163. https://doi.org/10.1093/hmg/ddw163
Corti S, Locatelli F, Papadimitriou D, Donadoni C, del Bo R, Crimi M, Bordoni A, Fortunato F et al (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 15:167–187. https://doi.org/10.1093/hmg/ddi446
Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Simone C, Falcone M et al (2010) Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 133:465–481. https://doi.org/10.1093/brain/awp318
Simone C, Nizzardo M, Rizzo F, Ruggieri M, Riboldi G, Salani S, Bucchia M, Bresolin N et al (2014) iPSC-derived neural stem cells act via kinase inhibition to exert neuroprotective effects in spinal muscular atrophy with respiratory distress type 1. Stem Cell Reports 3:297–311. https://doi.org/10.1016/j.stemcr.2014.06.004
Teng YD, Benn SC, Kalkanis SN et al (2012) Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 4:165ra164. https://doi.org/10.1126/scitranslmed.3004579
Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38:817–826. https://doi.org/10.1161/01.STR.0000247888.25985.62
Wakai T, Narasimhan P, Sakata H, Wang E, Yoshioka H, Kinouchi H, Chan PH (2016) Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 36:2134–2145. https://doi.org/10.1177/0271678X15613798
Xu L, Shen P, Hazel T, Johe K, Koliatsos VE (2011) Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats. Neurosci Lett 494:222–226. https://doi.org/10.1016/j.neulet.2011.03.017
Kim KS, Lee HJ, An J, Kim YB, Ra JC, Lim I, Kim SU (2014) Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model. Cell Transplant 23:1585–1597. https://doi.org/10.3727/096368913X673450
Eve DJ, Steiner G, Mahendrasah A, et al (2018) Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier. Oncotarget 9:10621–10634. doi: https://doi.org/10.18632/oncotarget.24360
Sironi F, Vallarola A, Violatto MB, Talamini L, Freschi M, de Gioia R, Capelli C, Agostini A et al (2017) Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Res 25:166–178. https://doi.org/10.1016/j.scr.2017.11.005
Riley J, Federici T, Polak M, Kelly C, Glass J, Raore B, Taub J, Kesner V et al (2012) Intraspinal stem cell transplantation in amyotrophic lateral sclerosis. Neurosurgery 71:405–416. https://doi.org/10.1227/NEU.0b013e31825ca05f
Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, Kelly C, Feldman EL (2012) Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30:1144–1151. https://doi.org/10.1002/stem.1079
Feldman EL, Boulis NM, Hur J, Johe K, Rutkove SB, Federici T, Polak M, Bordeau J et al (2014) Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 75:363–373. https://doi.org/10.1002/ana.24113
Glass JD, Hertzberg VS, Boulis NM, Riley J, Federici T, Polak M, Bordeau J, Fournier C et al (2016) Transplantation of spinal cord–derived neural stem cells for ALS. Neurology 87:392–400. https://doi.org/10.1212/WNL.0000000000002889
Goutman SA, Brown MB, Glass JD, Boulis NM, Johe K, Hazel T, Cudkowicz M, Atassi N et al (2018) Long-term phase 1/2 intraspinal stem cell transplantation outcomes in ALS. Ann Clin Transl Neurol 5:730–740. https://doi.org/10.1002/acn3.567
Barker RA, Widner H (2004) Immune problems in central nervous system cell therapy. NeuroRX 1:472–481. https://doi.org/10.1602/neurorx.1.4.472
Tadesse T, Gearing M, Senitzer D, Saxe D, Brat DJ, Bray R, Gebel H, Hill C et al (2014) Analysis of graft survival in a trial of stem cell transplant in ALS. Ann Clin Transl Neurol 1:900–908. https://doi.org/10.1002/acn3.134
Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253. https://doi.org/10.1038/nn2047
Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E (2014) Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:999–1015. https://doi.org/10.1007/s00018-013-1480-4
Srivastava AK, Gross SK, Almad AA, Bulte CA, Maragakis NJ, Bulte JWM (2017) Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 289:96–102. https://doi.org/10.1016/j.expneurol.2016.12.011
Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ (2003) Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21:405–416. https://doi.org/10.1634/stemcells.21-4-405
Bakshi A, Keck CA, Koshkin VS, LeBold DG, Siman R, Snyder EY, McIntosh TK (2005) Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Res 1065:8–19. https://doi.org/10.1016/j.brainres.2005.09.059
Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4:76–88. https://doi.org/10.1007/s12975-012-0251-0
Bernstock JD, Peruzzotti-Jametti L, Ye D, Gessler FA, Maric D, Vicario N, Lee YJ, Pluchino S et al (2017) Neural stem cell transplantation in ischemic stroke: a role for preconditioning and cellular engineering. J Cereb Blood Flow Metab 37:2314–2319. https://doi.org/10.1177/0271678X17700432
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A et al (2017) Strategies to enhance implantation and survival of stem cells after their injection in ischemic neural tissue. Stem Cells Dev 26:554–565. https://doi.org/10.1089/scd.2016.0268
Fan W-L, Liu P, Wang G, Pu JG, Xue X, Zhao JH (2017) Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats. J Cell Biochem 119:4339–4351. https://doi.org/10.1002/jcb.26397
Zhang G, Chen L, Guo X, Wang H, Chen W, Wu G, Gu B, Miao W et al (2018) Comparative analysis of microRNA expression profiles of exosomes derived from normal and hypoxic preconditioning human neural stem cells by next generation sequencing. J Biomed Nanotechnol 14:1075–1089. https://doi.org/10.1166/jbn.2018.2567
Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, Narasimhan P, Maier CM et al (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32:3462–3473. https://doi.org/10.1523/JNEUROSCI.5686-11.2012
Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH (2012) Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 135:3298–3310. https://doi.org/10.1093/brain/aws259
Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, Guzman R (2015) BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant 24:2449–2461. https://doi.org/10.3727/096368914X679354
Cheng Y-H, Xia W, Wong EWP, Xie Q, Shao J, Liu T, Quan Y, Zhang T et al (2015) Adjudin--a male contraceptive with other biological activities. Recent Pat Endocr Metab Immune Drug Discov 9:63–73
Shao J, Liu T, Xie QR, Zhang T, Yu H, Wang B, Ying W, Mruk DD et al (2013) Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation. J Neuroimmunol 254:83–90. https://doi.org/10.1016/j.jneuroim.2012.09.012
Zhang T, Yang X, Liu T, Shao J, Fu N, Yan A, Geng K, Xia W (2017) Adjudin-preconditioned neural stem cells enhance neuroprotection after ischemia reperfusion in mice. Stem Cell Res Ther 8:248. https://doi.org/10.1186/s13287-017-0677-0
Xue X, Chen X, Fan W, Wang G, Zhang L, Chen Z, Liu P, Liu M et al (2018) High-mobility group box 1 facilitates migration of neural stem cells via receptor for advanced glycation end products signaling pathway. Sci Rep 8:4513. https://doi.org/10.1038/s41598-018-22672-4
Ould-Brahim F, Sarma SN, Syal C, et al (2018) Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev scd.2018.0055. doi: https://doi.org/10.1089/scd.2018.0055
Degterev A, Linkermann A (2016) Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci 73:2251–2267. https://doi.org/10.1007/s00018-016-2198-x
Zhong J, Chan A, Morad L, Kornblum HI, Guoping Fan, Carmichael ST (2010) Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair 24:636–644. https://doi.org/10.1177/1545968310361958
Adil MM, Vazin T, Ananthanarayanan B, Rodrigues GMC, Rao AT, Kulkarni RU, Miller EW, Kumar S et al (2017) Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136:1–11. https://doi.org/10.1016/j.biomaterials.2017.05.008
Moshayedi P, Nih LR, Llorente IL, Berg AR, Cinkornpumin J, Lowry WE, Segura T, Carmichael ST (2016) Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 105:145–155. https://doi.org/10.1016/j.biomaterials.2016.07.028
Somaa FA, Wang T-Y, Niclis JC, Bruggeman KF, Kauhausen JA, Guo H, McDougall S, Williams RJ et al (2017) Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep 20:1964–1977. https://doi.org/10.1016/j.celrep.2017.07.069
George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, Mehta S, Sun G et al (2017) Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials 142:31–40. https://doi.org/10.1016/j.biomaterials.2017.07.020
Gowing G, Svendsen S, Svendsen CN (2017) Ex vivo gene therapy for the treatment of neurological disorders. In: Progress in brain research. pp 99–132
Andsberg G, Kokaia Z, Björklund A, Lindvall O, Martínez-Serrano A (1998) Amelioration of ischaemia-induced neuronal death in the rat striatum by NGF-secreting neural stem cells. Eur J Neurosci 10:2026–2036
Chang D-J, Lee N, Choi C, Jeon I, Oh SH, Shin DA, Hwang TS, Lee HJ et al (2013) Therapeutic effect of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) in a rodent model of middle cerebral artery occlusion. Cell Transplant 22:1441–1452. https://doi.org/10.3727/096368912X657323
Zhang Z-H, Wang R-Z, Wang R-Z, Li GL, Wei JJ, Li ZJ, Feng M, Kang J et al (2008) Transplantation of neural stem cells modified by human neurotrophin-3 promotes functional recovery after transient focal cerebral ischemia in rats. Neurosci Lett 444:227–230. https://doi.org/10.1016/j.neulet.2008.08.049
Chen B, Gao X-Q, Yang C-X, Tan SK, Sun ZL, Yan NH, Pang YG, Yuan M et al (2009) Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats. Brain Res 1284:1–11. https://doi.org/10.1016/j.brainres.2009.05.100
Zhu W, Mao Y, Zhao Y, Zhou LF, Wang Y, Zhu JH, Zhu Y, Yang GY (2005) Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery 57:325–333 discussion 325-33
Zhu J, Zhao Y, Chen S, Zhang WH, Lou L, Jin X (2011) Functional recovery after transplantation of neural stem cells modified by brain-derived neurotrophic factor in rats with cerebral ischaemia. J Int Med Res 39:488–498. https://doi.org/10.1177/147323001103900216
Thomsen GM, Avalos P, Ma AA, Alkaslasi M, Cho N, Wyss L, Vit JP, Godoy M et al (2018) Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells 36:1122–1131. https://doi.org/10.1002/stem.2825
Sakata H, Niizuma K, Wakai T, Narasimhan P, Maier CM, Chan PH (2012) Neural stem cells genetically modified to overexpress cu/Zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke 43:2423–2429. https://doi.org/10.1161/STROKEAHA.112.656900
Yang W, Sheng H, Wang H (2016) Targeting the SUMO pathway for neuroprotection in brain ischaemia. BMJ 1:101–107. https://doi.org/10.1136/svn-2016-000031
Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210:656–670. https://doi.org/10.1016/j.expneurol.2007.12.020
Wei L, Fraser JL, Lu Z-Y, Hu X, Yu SP (2012) Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 46:635–645. https://doi.org/10.1016/j.nbd.2012.03.002
Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L (2015) Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 272:78–87. https://doi.org/10.1016/j.expneurol.2015.03.011
Wei ZZ, Lee JH, Zhang Y, Zhu YB, Deveau TC, Gu X, Winter MM, Li J et al (2016) Intracranial transplantation of hypoxia-preconditioned iPSC-derived neural progenitor cells alleviates neuropsychiatric defects after traumatic brain injury in juvenile rats. Cell Transplant 25:797–809. https://doi.org/10.3727/096368916X690403
Acknowledgments
The following grant support is gratefully acknowledged: Italian Ministry of Health–RF-2016-02362317 and AFM-Telethon-2015, “Optimized Transplantation of hiPSC-derived LeX+CXCR4+VLA4 neural stem cells as a therapy for SMARD1” to GPC, and FP7-PEOPLE-2013-IRSES no. 612578 to SC. We thank the Associazione Amici del Centro Dino Ferrari for its support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Abati, E., Bresolin, N., Comi, G.P. et al. Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells for Motor Neuron Disease Therapy. Mol Neurobiol 56, 3356–3367 (2019). https://doi.org/10.1007/s12035-018-1305-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-018-1305-4