Molecular Neurobiology

, Volume 56, Issue 4, pp 2508–2523 | Cite as

Perampanel but Not Amantadine Prevents Behavioral Alterations and Epileptogenesis in Pilocarpine Rat Model of Status Epilepticus

  • Hanan Mohammad
  • Sathiya Sekar
  • Zelan Wei
  • Farzad Moien-AfshariEmail author
  • Changiz TaghibiglouEmail author


Pilocarpine-induced status epilepticus (SE), which results in the development of spontaneous recurrent seizures (SRSs) activates glutamatergic receptors that contribute to seizure sustenance and neuronal cell death. In the current study, we evaluate whether the exposure to perampanel, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker, or amantadine, a N-methyl-d-aspartic acid (NMDA) receptor blocker would reduce the SE-induced long-term consequences. SE was induced in adult male Sprague Dawley rats with pilocarpine. Perampanel or amantadine was injected 10 or 60 min after SE onset. The efficacy of either, in overcoming pilocarpine-induced SE was assessed using electroencephalogram (EEG) recordings. In addition, alterations in cognitive function, development of spontaneous recurrent seizures (SRSs), and hippocampal damage that are generally encountered after SE were also assessed at 72 h and 5 weeks after the induction of SE. Our results indicate that both early and late treatment with perampanel but not amantadine significantly reduced seizure activity. Furthermore, perampanel but not amantadine, reversed the memory deficits in Y-maze and novel object recognition (NOR) tests and retarded the appearance of SRSs. Moreover, perampanel treatment led to reduced SE-induced caspase-3 activation in the hippocampal lysates. Taken together, the data obtained from the study reveals that blocking AMPA receptors by perampanel can modify SE-induced long-term consequences. Our results may provide a proof of principle for the potential therapeutic application of perampanel in clinical use for status epilepticus in future.


AMPA receptor NMDA receptor Status epilepticus Spatial memory 



This work was supported by Saskatchewan Health Research Foundation (SHRF) Establishment Grant (SHRF No. 3543).


  1. 1.
    Chen JW, Naylor DE, Wasterlain CG (2007) Advances in the pathophysiology of status epilepticus. Acta Neurol Scand Suppl 186:7–15CrossRefGoogle Scholar
  2. 2.
    Walker MC (2016) Pathophysiology of status epilepticus. Neurosci Lett 667:84–91. CrossRefPubMedGoogle Scholar
  3. 3.
    Trinka E et al (2015) A definition and classification of status epilepticus—report of the ILAE task force on classification of status epilepticus. Epilepsia 56(10):1515–1523. CrossRefPubMedGoogle Scholar
  4. 4.
    Helmstaedter C et al (2003) Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Ann Neurol 54(4):425–432. CrossRefPubMedGoogle Scholar
  5. 5.
    Helmstaedter C (2007) Cognitive outcome of status epilepticus in adults. Epilepsia 48(Suppl 8):85–90CrossRefGoogle Scholar
  6. 6.
    DeGiorgio CM et al (1992) Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia 33(1):23–27CrossRefGoogle Scholar
  7. 7.
    Provenzale JM et al (2008) Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol 190(4):976–983. CrossRefPubMedGoogle Scholar
  8. 8.
    Fujisao EK et al (2017) Hippocampal damage and atrophy secondary to status epilepticus in a patient with schizophrenia. Front Neurol 8:24. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nairismagi J et al (2004) Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia 45(9):1024–1034. CrossRefPubMedGoogle Scholar
  10. 10.
    Pohlmann-Eden B et al (2004) Evolution of MRI changes and development of bilateral hippocampal sclerosis during long lasting generalised status epilepticus. J Neurol Neurosurg Psychiatry 75(6):898–900CrossRefGoogle Scholar
  11. 11.
    Gibbons MB et al (2013) Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem Int 63(7):660–669. CrossRefPubMedGoogle Scholar
  12. 12.
    Feng L, Molnar P, Nadler JV (2003) Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. J Neurosci 23(12):5381–5390CrossRefGoogle Scholar
  13. 13.
    Treiman DM et al (1998) A comparison of four treatments for generalized convulsive status epilepticus. Veterans affairs status epilepticus cooperative study group. N Engl J Med 339(12):792–798. CrossRefPubMedGoogle Scholar
  14. 14.
    Kapur J, Macdonald RL (1997) Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 17(19):7532–7540CrossRefGoogle Scholar
  15. 15.
    Mazarati AM et al (1998) Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res 814(1–2):179–185CrossRefGoogle Scholar
  16. 16.
    Goodkin HP et al (2008) Subunit-specific trafficking of GABA(a) receptors during status epilepticus. J Neurosci 28(10):2527–2538. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Naylor DE, Liu H, Wasterlain CG (2005) Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25(34):7724–7733. CrossRefPubMedGoogle Scholar
  18. 18.
    Terunuma M et al (2008) Deficits in phosphorylation of GABA(A) receptors by intimately associated protein kinase C activity underlie compromised synaptic inhibition during status epilepticus. J Neurosci 28(2):376–384. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Niquet J et al (2016) Benzodiazepine-refractory status epilepticus: pathophysiology and principles of treatment. Ann N Y Acad Sci 1378(1):166–173. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fritsch B et al (2010) Treatment of early and late kainic acid-induced status epilepticus with the noncompetitive AMPA receptor antagonist GYKI 52466. Epilepsia 51(1):108–117. CrossRefPubMedGoogle Scholar
  21. 21.
    Naylor DE et al (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 54:225–238. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loss CM, Cordova SD, de Oliveira DL (2012) Ketamine reduces neuronal degeneration and anxiety levels when administered during early life-induced status epilepticus in rats. Brain Res 1474:110–117. CrossRefPubMedGoogle Scholar
  23. 23.
    Borris DJ, Bertram EH, Kapur J (2000) Ketamine controls prolonged status epilepticus. Epilepsy Res 42(2–3):117–122CrossRefGoogle Scholar
  24. 24.
    Schauwecker PE (2010) Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Exp Neurol 224(1):207–218. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grooms SY, Opitz T, Bennett MV et al (2000) Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc Natl Acad Sci U S A 97:3631–3636CrossRefGoogle Scholar
  26. 26.
    Friedman LK (1998) Selective reduction of GluR2 protein in adult hippocampal CA3 neurons following status epilepticus but prior to cell loss. Hippocampus 8:511–525CrossRefGoogle Scholar
  27. 27.
    Leo A et al (2018) The role of AMPA receptors and their antagonists in status epilepticus. Epilepsia 58(6):1098–1108. CrossRefGoogle Scholar
  28. 28.
    Condorelli DF et al (1994) Changes in gene expression of AMPA-selective glutamate receptor subunits induced by status epilepticus in rat brain. Neurochem Int 25:367–376CrossRefGoogle Scholar
  29. 29.
    Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 197:9–18. CrossRefGoogle Scholar
  30. 30.
    Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312–3322. CrossRefPubMedGoogle Scholar
  31. 31.
    Rajput A, Rajput AH (2006) Parkinson's disease management strategies. Expert Rev Neurother 6(1):91–99. CrossRefPubMedGoogle Scholar
  32. 32.
    Wang T et al (2014) Amantadine improves cognitive outcome and increases neuronal survival after fluid percussion traumatic brain injury in rats. J Neurotrauma 31(4):370–377. CrossRefPubMedGoogle Scholar
  33. 33.
    Perry MS et al (2012) Amantadine for the treatment of refractory absence seizures in children. Pediatr Neurol 46(4):243–245. CrossRefPubMedGoogle Scholar
  34. 34.
    Shahar EM, Brand N (1992) Effect of add-on amantadine therapy for refractory absence epilepsy. J Pediatr 121(5 Pt 1):819–821CrossRefGoogle Scholar
  35. 35.
    Shields WD, Lake JL, Chugani HT (1985) Amantadine in the treatment of refractory epilepsy in childhood: an open trial in 10 patients. Neurology 35(4):579–581CrossRefGoogle Scholar
  36. 36.
    French JA et al (2012) Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology 79(6):589–596. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    French JA et al (2015) Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy: a randomized trial. Neurology 85(11):950–957. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hanada T et al (2011) Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52(7):1331–1340. CrossRefPubMedGoogle Scholar
  39. 39.
    Hanada T, Ido K, Kosasa T (2014) Effect of perampanel, a novel AMPA antagonist, on benzodiazepine-resistant status epilepticus in a lithium-pilocarpine rat model. Pharmacol Res Perspect 2(5):e00063. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Eid T et al (2008) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131(Pt 8):2061–2070. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Racine RJ et al (1973) Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and inter-stimulation interval effects. Electroencephalogr Clin Neurophysiol 35(5):553–556CrossRefGoogle Scholar
  42. 42.
    Ghafouri S et al (2016) Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res 126:37–44. CrossRefPubMedGoogle Scholar
  43. 43.
    Brewster AL et al (2013) Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One 8(3):e57808. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Arida RM et al (1999) The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res 34(2–3):99–107CrossRefGoogle Scholar
  45. 45.
    Hoexter MQ et al (2005) Consequences of prolonged caffeine administration and its withdrawal on pilocarpine- and kainate-induced seizures in rats. Epilepsia 46(9):1401–1406. CrossRefPubMedGoogle Scholar
  46. 46.
    Goffin K et al (2007) Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol 205(2):501–505. CrossRefPubMedGoogle Scholar
  47. 47.
    Lopim GM et al (2016) Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res 1634:179–186. CrossRefPubMedGoogle Scholar
  48. 48.
    Cavalheiro EA, Naffah-Mazzacoratti MG, Mello LE, Leite JP (2006) The pilocarpine model of seizures. In: Pitkanen A, Schwartzkroin PA, Moshe SL (eds) Models of seizures and epilepsy. Elsevier Academic Press, New York, pp. 433–448CrossRefGoogle Scholar
  49. 49.
    Rajasekaran K, Todorovic M, Kapur J (2012) Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann Neurol 72(1):91–102. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Suprynowicz FA et al (2008) HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene 27(8):1071–1078. CrossRefPubMedGoogle Scholar
  51. 51.
    Dinic J, Ashrafzadeh P, Parmryd I (2013) Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim Biophys Acta 1828(3):1102–1111. CrossRefPubMedGoogle Scholar
  52. 52.
    Pitkanen A (2002) Drug-mediated neuroprotection and antiepileptogenesis: animal data. Neurology 59(9 Suppl 5):S27–S33CrossRefGoogle Scholar
  53. 53.
    Pitkanen A, Halonen T (1998) Prevention of epilepsy. Trends Pharmacol Sci 19(7):253–255CrossRefGoogle Scholar
  54. 54.
    Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50(1–2):105–123CrossRefGoogle Scholar
  55. 55.
    Mazarati AM, Wasterlain CG (1999) N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett 265(3):187–190CrossRefGoogle Scholar
  56. 56.
    Chauviere L et al (2009) Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci 29(17):5402–5410. CrossRefPubMedGoogle Scholar
  57. 57.
    Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201(4351):160–163CrossRefGoogle Scholar
  58. 58.
    Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20(23):8853–8860CrossRefGoogle Scholar
  59. 59.
    Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101(40):14515–14520. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gould TJ et al (2002) Effects of hippocampal lesions on patterned motor learning in the rat. Brain Res Bull 58(6):581–586CrossRefGoogle Scholar
  61. 61.
    Citraro R et al (2017) Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia 58(2):231–238CrossRefGoogle Scholar
  62. 62.
    Dubuis N et al (2017) Anti-ictogenic and anti-epileptogenic properties of perampanel in mature and immature rats. Epilepsia 58(11):1985–1192. CrossRefGoogle Scholar
  63. 63.
    Wu T et al (2017) The neuroprotective effect of perampanel in lithium-pilocarpine rat seizure model. Epilepsy Res 137:152158–152158. CrossRefGoogle Scholar
  64. 64.
    Fang Y, Wang X (2015) Ketamine for the treatment of refractory status epilepticus. Seizure 30:14–20. CrossRefPubMedGoogle Scholar
  65. 65.
    Hosenbocus S, Chahal R (2013) Amantadine: a review of use in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry 22(1):55–60CrossRefGoogle Scholar
  66. 66.
    Plant K et al (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9(5):602–604. CrossRefPubMedGoogle Scholar
  67. 67.
    Kwak S, Weiss JH (2006) Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 16(3):281–287. CrossRefPubMedGoogle Scholar
  68. 68.
    Barygin OI (2016) Inhibition of calcium-permeable and calcium-impermeable AMPA receptors by perampanel in rat brain neurons. Neurosci Lett 633:146–151. CrossRefPubMedGoogle Scholar
  69. 69.
    Fujikawa DG, Shinmei SS, Cai B (2000) Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 41(Suppl 6):S9–S13CrossRefGoogle Scholar
  70. 70.
    Salmenpera T et al (1998) Hippocampal damage caused by seizures in temporal lobe epilepsy. Lancet 351(9095):35. CrossRefPubMedGoogle Scholar
  71. 71.
    Fujikawa DG et al (2002) Caspase-3 is not activated in seizure-induced neuronal necrosis with internucleosomal DNA cleavage. J Neurochem 83(1):229–240CrossRefGoogle Scholar
  72. 72.
    Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. CrossRefPubMedGoogle Scholar
  73. 73.
    Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15(11):1382–1402. CrossRefPubMedGoogle Scholar
  74. 74.
    Niquet J et al (2007) Status epilepticus triggers caspase-3 activation and necrosis in the immature rat brain. Epilepsia 48(6):1203–1206. CrossRefPubMedGoogle Scholar
  75. 75.
    Faherty CJ, Xanthoudakis S, Smeyne RJ (1999) Caspase-3-dependent neuronal death in the hippocampus following kainic acid treatment. Brain Res Mol Brain Res 70(1):159–163CrossRefGoogle Scholar
  76. 76.
    Narkilahti S et al (2003) Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 18(6):1486–1496CrossRefGoogle Scholar
  77. 77.
    Tzeng TT et al (2013) Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci 20:90. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Medicine, College of MedicineUniversity of SaskatchewanSaskatoonCanada
  3. 3.Division of Neurology, Department of MedicineUniversity of British ColombiaVancouverCanada

Personalised recommendations