Skip to main content

Advertisement

Log in

Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Soluble Aβ oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aβ receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aβ oligomers. The interactions of PrP with both Aβ42 and the highly toxic N-truncated pyroglutamylated species (AβpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aβ42 and AβpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aβ42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aβ42 sample. A distinct behavior is observed for Aβ42 1-30 region and C-terminal residues, suggesting that PrP protects Aβ42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aβ42 N-tail is the locus of interaction with PrP. PrP/AβpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aβ oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aβ oligomers bears relevance for studies of druggable pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

PrP:

Cellular prion protein

HM:

High monomer content

LM:

Low monomer content

NMR:

Nuclear magnetic resonance

ThT:

Thioflavin

TEM:

Trasmission electron microscopy

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolimu bromide

DMSO:

Dimethyl sulfoxide

References

  1. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ono K (2017) Alzheimer’s disease as oligomeropathy. Neurochem Int. https://doi.org/10.1016/j.neuint.2017.08.010

  3. Forloni G, Artuso V, La Vitola P, Balducci C (2016) Oligomeropathies and pathogenesis of Alzheimer and Parkinson’s diseases. Mov Disord 31(6):771–781. https://doi.org/10.1002/mds.26624

    Article  CAS  PubMed  Google Scholar 

  4. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cynis H, Frost JL, Crehan H, Lemere CA (2016) Immunotherapy targeting pyroglutamate-3 Abeta: prospects and challenges. Mol Neurodegener 11(1):48. https://doi.org/10.1186/s13024-016-0115-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B et al (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta. Nature 485(7400):651–655. https://doi.org/10.1038/nature11060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tomaselli S, Pagano K, D'Arrigo C, Molinari H, Ragona L (2017) Evidence of molecular interactions of Abeta1-42 with N-terminal truncated beta amyloids by NMR. ACS Chem Neurosci 8(4):759–765. https://doi.org/10.1021/acschemneuro.6b00456

    Article  CAS  PubMed  Google Scholar 

  8. Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276(2):422–427. https://doi.org/10.1006/bbrc.2000.3490

    Article  CAS  PubMed  Google Scholar 

  9. Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S et al (2017) Structural and functional analyses of pyroglutamate-amyloid-beta-specific antibodies as a basis for Alzheimer immunotherapy. J Biol Chem 292(30):12713–12724. https://doi.org/10.1074/jbc.M117.777839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dammers C, Schwarten M, Buell AK, Willbold D (2017) Pyroglutamate-modified Aβ(3-42) affects aggregation kinetics of Aβ(1-42) by accelerating primary and secondary pathways. Chem Sci 8:8–5004. https://doi.org/10.1039/c6sc04797a

    Article  CAS  Google Scholar 

  11. Smith LM, Strittmatter SM (2017) Binding sites for amyloid-beta oligomers and synaptic toxicity. Cold Spring Harb Perspect Med 7(5). https://doi.org/10.1101/cshperspect.a024075

  12. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240

    Article  CAS  Google Scholar 

  13. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L et al (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A 107(5):2295–2300. https://doi.org/10.1073/pnas.0911829107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesne SE (2012) The complex PrP(c)-Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 32(47):16857–16871a. https://doi.org/10.1523/JNEUROSCI.1858-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salazar SV, Strittmatter SM (2017) Cellular prion protein as a receptor for amyloid-beta oligomers in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1143–1147. https://doi.org/10.1016/j.bbrc.2016.09.062

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Liu B (2013) Alzheimer’s disease and prion protein. Intractable Rare Dis Res 2(2):35–44. https://doi.org/10.5582/irdr.2013.v2.2.35

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beraldo FH, Ostapchenko VG, Caetano FA, Guimaraes AL, Ferretti GD, Daude N, Bertram L, Nogueira KO et al (2016) Regulation of amyloid beta oligomer binding to neurons and neurotoxicity by the prion protein-mGluR5 complex. J Biol Chem 291(42):21945–21955. https://doi.org/10.1074/jbc.M116.738286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Linden R (2017) The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci 10:77. https://doi.org/10.3389/fnmol.2017.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. https://doi.org/10.1038/nature07761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nieznanski K, Choi JK, Chen S, Surewicz K, Surewicz WK (2012) Soluble prion protein inhibits amyloid-beta (Abeta) fibrillization and toxicity. J Biol Chem 287(40):33104–33108. https://doi.org/10.1074/jbc.C112.400614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scott-McKean JJ, Surewicz K, Choi JK, Ruffin VA, Salameh AI, Nieznanski K, Costa AC, Surewicz WK (2016) Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Abeta oligomers: implications for novel therapeutic strategy in Alzheimer’s disease. Neurobiol Dis 91:124–131. https://doi.org/10.1016/j.nbd.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M et al (2015) Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138(Pt 4):1009–1022. https://doi.org/10.1093/brain/awv006

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xue C, Lin TY, Chang D, Guo Z (2017) Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci 4(1):160696. https://doi.org/10.1098/rsos.160696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu G, Gaines JC, Robbins KJ, Lazo ND (2012) Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance. ACS Med Chem Lett 3(10):856–859. https://doi.org/10.1021/ml300147m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A et al (2012) Differential toxicity, conformation and morphology of typical initial aggregation states of Abeta1-42 and Abetapy3-42 beta-amyloids. Int J Biochem Cell Biol 44(11):2085–2093. https://doi.org/10.1016/j.biocel.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  26. Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, Cappai R, Wade JD et al (2008) Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J Neurosci 28(46):11950–11958. https://doi.org/10.1523/JNEUROSCI.3916-08.2008

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40(20):6036–6046

    Article  CAS  Google Scholar 

  28. Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24(9):743–750. https://doi.org/10.1093/protein/gzr020

    Article  CAS  PubMed  Google Scholar 

  29. Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F et al (2012) Structural basis for increased toxicity of pathological abeta42: abeta40 ratios in Alzheimer disease. J Biol Chem 287(8):5650–5660. https://doi.org/10.1074/jbc.M111.264473

    Article  CAS  PubMed  Google Scholar 

  30. Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 Hsqc experiments optimized to retain full sensitivity. J Magn Reson Ser A 102(2):241–245. https://doi.org/10.1006/jmra.1993.1098

    Article  CAS  Google Scholar 

  31. Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson Ser B 108(1):94–98. https://doi.org/10.1006/jmrb.1995.1109

    Article  CAS  Google Scholar 

  32. Ikura M, Bax A (1992) Isotope-filtered 2d NMR of a protein peptide complex: study of a skeletal-muscle myosin light chain kinase fragment bound to calmodulin. J Am Chem Soc 114(7):2433–2440. https://doi.org/10.1021/ja00033a019

    Article  CAS  Google Scholar 

  33. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  Google Scholar 

  34. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. https://doi.org/10.1385/1-59259-809-9:313

    Article  CAS  PubMed  Google Scholar 

  35. Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D'Amato L (2012) Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity. J Neurochem 123(6):963–970. https://doi.org/10.1111/jnc.12004

    Article  CAS  PubMed  Google Scholar 

  36. Corsaro A, Bajetto A, Thellung S, Begani G, Villa V, Nizzari M, Pattarozzi A, Solari A et al (2016) Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 7(25):38638–38657. https://doi.org/10.18632/oncotarget.9575

    Article  PubMed  PubMed Central  Google Scholar 

  37. Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M et al (2016) Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol Res 113(Pt A):500–514. https://doi.org/10.1016/j.phrs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  38. Thellung S, Gatta E, Pellistri F, Villa V, Corsaro A, Nizzari M, Robello M, Florio T (2017) Different molecular mechanisms mediate direct or glia-dependent prion protein fragment 90-231 neurotoxic effects in cerebellar granule neurons. Neurotox Res 32:381–397. https://doi.org/10.1007/s12640-017-9749-2

    Article  CAS  PubMed  Google Scholar 

  39. Villa V, Thellung S, Corsaro A, Novelli F, Tasso B, Colucci-D'Amato L, Gatta E, Tonelli M et al (2016) Celecoxib inhibits prion protein 90-231-mediated pro-inflammatory responses in microglial cells. Mol Neurobiol 53(1):57–72. https://doi.org/10.1007/s12035-014-8982-4

    Article  CAS  PubMed  Google Scholar 

  40. Lauren J (2014) Cellular prion protein as a therapeutic target in Alzheimer’s disease. J Alzheimers Dis 38(2):227–244. https://doi.org/10.3233/JAD-130950

    Article  CAS  PubMed  Google Scholar 

  41. Corsaro A, Thellung S, Villa V, Nizzari M, Florio T (2012) Role of prion protein aggregation in neurotoxicity. Int J Mol Sci 13(7):8648–8669. https://doi.org/10.3390/ijms13078648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zou WQ, Capellari S, Parchi P, Sy MS, Gambetti P, Chen SG (2003) Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J Biol Chem 278(42):40429–40436. https://doi.org/10.1074/jbc.M308550200

    Article  CAS  PubMed  Google Scholar 

  43. Dammers C, Gremer L, Neudecker P, Demuth HU, Schwarten M, Willbold D (2015) Purification and characterization of recombinant N-terminally pyroglutamate-modified amyloid-beta variants and structural analysis by solution NMR spectroscopy. PLoS One 10(10):e0139710. https://doi.org/10.1371/journal.pone.0139710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wulff M, Baumann M, Thummler A, Yadav JK, Heinrich L, Knupfer U, Schlenzig D, Schierhorn A et al (2016) Enhanced fibril fragmentation of N-terminally truncated and pyroglutamyl-modified Abeta peptides. Angew Chem Int Ed Engl 55(16):5081–5084. https://doi.org/10.1002/anie.201511099

    Article  CAS  PubMed  Google Scholar 

  45. Scheidt HA, Adler J, Krueger M, Huster D (2016) Fibrils of truncated pyroglutamyl-modified Abeta peptide exhibit a similar structure as wildtype mature Abeta fibrils. Sci Rep 6:33531. https://doi.org/10.1038/srep33531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Bohm G, Demuth HU (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45(41):12393–12399. https://doi.org/10.1021/bi0612667

    Article  CAS  PubMed  Google Scholar 

  47. Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH (2013) The cellular prion protein traps Alzheimer’s Abeta in an oligomeric form and disassembles amyloid fibers. FASEB J 27(5):1847–1858. https://doi.org/10.1096/fj.12-222588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bove-Fenderson E, Urano R, Straub JE, Harris DA (2017) Cellular prion protein targets amyloid-beta fibril ends via its C-terminal domain to prevent elongation. J Biol Chem 292:16858–16871. https://doi.org/10.1074/jbc.M117.789990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suvorina MY, Selivanova OM, Grigorashvili EI, Nikulin AD, Marchenkov VV, Surin AK, Galzitskaya OV (2015) Studies of polymorphism of amyloid-beta42 peptide from different suppliers. J Alzheimers Dis 47(3):583–593. https://doi.org/10.3233/JAD-150147

    Article  CAS  PubMed  Google Scholar 

  50. Editorial NN (2011) State of aggregation. Nat Neurosci 14(4):399. https://doi.org/10.1038/nn0411-399

    Article  CAS  Google Scholar 

  51. Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480(7376):268–272. https://doi.org/10.1038/nature10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Algamal M, Ahmed R, Jafari N, Ahsan B, Ortega J, Melacini G (2017) Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid beta (Abeta) peptides in the monomer and protofibril states. J Biol Chem 292(42):17158–17168. https://doi.org/10.1074/jbc.M117.792853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cremades N, Dobson CM (2018) The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 109(Pt B):178–190. https://doi.org/10.1016/j.nbd.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  54. Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M et al (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110(24):9758–9763. https://doi.org/10.1073/pnas.1218402110

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ganzinger KA, Narayan P, Qamar SS, Weimann L, Ranasinghe RT, Aguzzi A, Dobson CM, McColl J et al (2014) Single-molecule imaging reveals that small amyloid-beta1-42 oligomers interact with the cellular prion protein (PrP(C)). Chembiochem 15(17):2515–2521. https://doi.org/10.1002/cbic.201402377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA et al (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem 7(2):257–267. https://doi.org/10.1002/cbic.200500223

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fandrich M, Grigorieff N (2015) Peptide dimer structure in an Abeta (1-42) fibril visualized with cryo-EM. Proc Natl Acad Sci U S A 112(38):11858–11863. https://doi.org/10.1073/pnas.1503455112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B et al (2016) Atomic resolution structure of monomorphic Abeta42 amyloid fibrils. J Am Chem Soc 138(30):9663–9674. https://doi.org/10.1021/jacs.6b05129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galante D, Ruggeri FS, Dietler G, Pellistri F, Gatta E, Corsaro A, Florio T, Perico A et al (2016) A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J Biochem Cell Biol 79:261–270. https://doi.org/10.1016/j.biocel.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  60. Corsaro A, Paludi D, Villa V, D'Arrigo C, Chiovitti K, Thellung S, Russo C, Di Cola D et al (2006) Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90-231. Int J Immunopathol Pharmacol 19(2):339–356. https://doi.org/10.1177/039463200601900211

    Article  CAS  PubMed  Google Scholar 

  61. Chiovitti K, Corsaro A, Thellung S, Villa V, Paludi D, D'Arrigo C, Russo C, Perico A et al (2007) Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J Neurochem 103(6):2597–2609. https://doi.org/10.1111/j.1471-4159.2007.04965.x

    Article  CAS  PubMed  Google Scholar 

  62. Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, La Vitola P, Messa M et al (2013) An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288(11):7857–7866. https://doi.org/10.1074/jbc.M112.423954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldblatt G, Cilenti L, Matos JO, Lee B, Ciaffone N, Wang QX, Tetard L, Teter K et al (2017) Unmodified and pyroglutamylated amyloid beta peptides form hypertoxic hetero-oligomers of unique secondary structure. FEBS J 284(9):1355–1369. https://doi.org/10.1111/febs.14058

    Article  CAS  PubMed  Google Scholar 

  64. Audano M, Schneider A, Mitro N (2018) Mitochondria, lysosomes and dysfunction: their meaning in neurodegeneration. J Neurochem. https://doi.org/10.1111/jnc.14471

  65. Thellung S, Corsaro A, Villa V, Simi A, Vella S, Pagano A, Florio T (2011) Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis 2:e138. https://doi.org/10.1038/cddis.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thellung S, Scoti B, Corsaro A, Villa V, Nizzari M, Gagliani MC, Porcile C, Russo C et al (2018) Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis 9(2):166. https://doi.org/10.1038/s41419-017-0252-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235. https://doi.org/10.1038/nn.3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A et al (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79(5):887–902. https://doi.org/10.1016/j.neuron.2013.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ahmed R, Melacini G (2018) A solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors. Chem Commun (Camb) 54(37):4644–4652. https://doi.org/10.1039/c8cc01380b

    Article  CAS  Google Scholar 

  70. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567. https://doi.org/10.1038/nsmb.1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Milojevic J, Esposito V, Das R, Melacini G (2007) Understanding the molecular basis for the inhibition of the Alzheimer’s Abeta-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy. J Am Chem Soc 129(14):4282–4290. https://doi.org/10.1021/ja067367+

    Article  CAS  PubMed  Google Scholar 

  72. Garai K, Frieden C (2013) Quantitative analysis of the time course of Abeta oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Abeta. Proc Natl Acad Sci U S A 110(9):3321–3326. https://doi.org/10.1073/pnas.1222478110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Alzheimer Association (NIRG-14-321500 Grant) and CARIPLO Foundation (2015-0503). LR, KP, ST acknowledge financial support of University of Verona (Bando JOINT Projects 2017, Prof. Michael Assfalg - Dr. Laura Ragona). KP, HM and LR acknowledge Fondazione Antonio De Marco for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simona Tomaselli or Laura Ragona.

Electronic supplementary material

ESM 1

(DOCX 668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagano, K., Galante, D., D’Arrigo, C. et al. Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Mol Neurobiol 56, 1957–1971 (2019). https://doi.org/10.1007/s12035-018-1202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1202-x

Keywords

Navigation