Abstract
A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.
This is a preview of subscription content, access via your institution.







Change history
15 September 2018
The original version of this article unfortunately contained mistake in Table 2 to where two directionality arrows were inverted.
References
- 1.
Lavie CJ, Archer E, Nauman J (2017) Arrival and survival of the fittest. Am Heart J 196:153–155. https://doi.org/10.1016/j.ahj.2017.08.020.
- 2.
Troiano RP, Berrigan D, Dodd KW et al (2008) Physical activity in the United States measured by accelerometer. Med Sci Sport Exerc 40:181–188. https://doi.org/10.1249/mss.0b013e31815a51b3
- 3.
Ruegsegger GN, Booth FW (2017) Health benefits of exercise. Cold Spring Harb Perspect Med:a029694. https://doi.org/10.1101/cshperspect.a029694
- 4.
den Hoed M, Brage S, Zhao JH et al (2013) Heritability of objectively assessed daily physical activity and sedentary behavior. Am J Clin Nutr 98:1317–1325. https://doi.org/10.3945/ajcn.113.069849
- 5.
Roberts MD, Brown JD, Company JM, et al (2013) Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances. AJP Regul Integr Comp Physiol 304:R1024–R1035. doi: https://doi.org/10.1152/ajpregu.00581.2012
- 6.
Ruegsegger GN, Toedebusch RG, Will MJ, Booth FW (2015) Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation. Neuropharmacology 97:171–181. https://doi.org/10.1016/j.neuropharm.2015.05.022
- 7.
Ruegsegger GN, Brown JD, Kovarik MC, Miller DK, Booth FW (2016) Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 339:525–537. https://doi.org/10.1016/j.neuroscience.2016.10.020
- 8.
Knab AM, Bowen RS, Hamilton AT, Gulledge AA, Lightfoot JT (2009) Altered dopaminergic profiles: implications for the regulation of voluntary physical activity. Behav Brain Res 204:147–152. https://doi.org/10.1016/j.bbr.2009.05.034
- 9.
Knab AM, Lightfoot JT (2010) Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 6:133–150. https://doi.org/10.7150/ijbs.6.133
- 10.
Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97. https://doi.org/10.1016/0301-0082(80)90018-0
- 11.
Berridge KC (2007) The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 191:391–431. https://doi.org/10.1007/s00213-006-0578-x
- 12.
Brené S, Bjørnebekk A, Åberg E, Mathé AA, Olson L, Werme M (2007) Running is rewarding and antidepressive. Physiol Behav 92:136–140. https://doi.org/10.1016/j.physbeh.2007.05.015
- 13.
Greenwood BN, Foley TE, Le TV et al (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217:354–362. https://doi.org/10.1016/j.bbr.2010.11.005
- 14.
Batty NJ, Fenrich KK, Fouad K (2016) The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 652:1–8. https://doi.org/10.1016/j.neulet.2016.12.033
- 15.
Nestler EJ (2016) Reflections on: “A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function”. Brain Res 1645:71–74. https://doi.org/10.1016/j.brainres.2015.12.039
- 16.
Beninger RJ, Miller R (1998) Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345. https://doi.org/10.1016/S0149-7634(97)00019-5
- 17.
Roberts MD, Toedebusch RG, Wells KD, Company JM, Brown JD, Cruthirds CL, Heese AJ, Zhu C et al (2014) Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour. J Physiol 592:2119–2135. https://doi.org/10.1113/jphysiol.2013.268805
- 18.
Dalton GD, Dewey WL (2006) Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40:23–34. https://doi.org/10.1016/j.npep.2005.10.002
- 19.
Chen X, Dai JC, Orellana SA, Greenfield EM (2005) Endogenous protein kinase inhibitor γ terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: Termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 280:2700–2707. https://doi.org/10.1074/jbc.M412558200
- 20.
Gangolli EA, Belyamani M, Muchinsky S, Narula A, Burton KA, McKnight GS, Uhler MD, Idzerda RL (2000) Deficient gene expression in protein kinase inhibitor alpha null mutant mice. Mol Cell Biol 20:3442–3448. https://doi.org/10.1128/MCB.20.10.3442-3448.2000
- 21.
Pitts GC (1984) Body composition in the rat: interactions of exercise, age, sex, and diet. Am J Phys 246:R495–R501. https://doi.org/10.1152/ajpregu.1984.246.4.R495
- 22.
Anantharaman-Barr HG, Decombaz J (1989) The effect of wheel running and the estrous cycle on energy expenditure in female rats. Physiol Behav 46:259–263. https://doi.org/10.1016/0031-9384(89)90265-5
- 23.
Koch LG, Britton SL (2001) Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics 5:45–52
- 24.
Roberts MD, Gilpin L, Parker KE, Childs TE, Will MJ, Booth FW (2012) Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances. Physiol Behav 105:661–668. https://doi.org/10.1016/j.physbeh.2011.09.024
- 25.
Hyatt HW, Toedebusch RG, Ruegsegger G, Mobley CB, Fox CD, McGinnis GR, Quindry JC, Booth FW et al (2015) Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity. Physiol Rep 3:e12619. https://doi.org/10.14814/phy2.12619
- 26.
Grigsby KB, Kovarik CM, Rottinghaus GE, Booth FW (2018) High and low nightly running behavior associates with nucleus accumbens N-methyl-D-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences. Neurosci Lett 671:50–55. https://doi.org/10.1016/j.neulet.2018.02.011
- 27.
Swallow JG, Carter PA, Garland T (1998) Artificial selection for increased wheel-running behavior in house mice. Behav Genet 28:227–237. https://doi.org/10.1023/A:1021479331779
- 28.
Eisenstein SA, Holmes PV (2007) Chronic and voluntary exercise enhances learning of conditioned place preference to morphine in rats. Pharmacol Biochem Behav 86:607–615. https://doi.org/10.1016/j.pbb.2007.02.002
- 29.
Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates. Acad Press San Diego 3rd ed:
- 30.
Zachor DA, Moore JF, Brezausek C, Theibert A, Percy AK (2000) Cocaine inhibits NGF-induced PC12 cells differentiation through D1-type dopamine receptors. Brain Res 869:85–97. https://doi.org/10.1016/S0006-8993(00)02355-6
- 31.
Jang J-H, Surh Y-J (2005) AP-1 mediates beta-amyloid-induced iNOS expression in PC12 cells via the ERK2 and p38 MAPK signaling pathways. Biochem Biophys Res Commun 331:1421–1428. https://doi.org/10.1016/j.bbrc.2005.04.057
- 32.
Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW (2002) GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283:C545–C551. https://doi.org/10.1152/ajpcell.00049.2002
- 33.
Machida S, Spangenburg EE, Booth FW (2003) Forkhead transcription factor FoxO1 transduces insulin-like growth factor’s signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196:523–531. https://doi.org/10.1002/jcp.10339
- 34.
Vasanwala FH, Kusam S, Toney LM, Dent AL (2002) Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 169:1922–1929. https://doi.org/10.4049/jimmunol.169.4.1922
- 35.
Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-B signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107. https://doi.org/10.1038/nature08462
- 36.
Hoffmann HM, Nadal R, Vignes M, Ortiz J (2012) Chronic cocaine self-administration modulates ERK1/2 and CREB responses to dopamine receptor agonists in striatal slices. Addict Biol 17:565–575. https://doi.org/10.1111/j.1369-1600.2011.00353.x
- 37.
Whishaw IQ, Cioe JDD, Previsich N, Kolb B (1977) The variability of the interaural line vs the stability of bregma in rat stereotaxic surgery. Physiol Behav 19:719–722. https://doi.org/10.1016/0031-9384(77)90304-3
- 38.
Rhodes JS, Garland T (2003) Differential sensitivity to acute administration of Ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 167:242–250. https://doi.org/10.1007/s00213-003-1399-9
- 39.
Will MJ, Franzblau EB, Kelley AE (2004) The amygdala is critical for opioid-mediated binge eating of fat. Neuroreport 15:1857–1860. https://doi.org/10.1097/00001756-200408260-00004
- 40.
Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742. doi: 20/20/7737 [pii]
- 41.
Ruegsegger GN, Grigsby KB, Kelty TJ, Zidon TM, Childs TE, Vieira-Potter VJ, Klinkebiel DL, Matheny M et al (2017) Maternal western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression. FASEB J 31:5371–5383. https://doi.org/10.1096/fj.201700389R
- 42.
Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534. https://doi.org/10.1016/S0149-7634(05)80194-0
- 43.
Rygula R, Abumaria N, Flügge G, Fuchs E, Rüther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162:127–134. https://doi.org/10.1016/j.bbr.2005.03.009
- 44.
Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: The neuropharmacological basis of reward. Topics in experimental psychopharmacology. pp 264–319.
- 45.
Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56:139–148. https://doi.org/10.1016/j.neuropharm.2008.06.027
- 46.
Adami ANDREOLLO N, Freitas dos SANTOS E, Rachel ARAÚJO M, et al (2012) Rat’s age versus human’s age: what is the relationship? ABCD Arq Bras Cir Dig 25:49–51 . doi: https://doi.org/10.1590/S0102-67202012000100011
- 47.
De Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296. https://doi.org/10.1007/s12035-012-8293-6
- 48.
Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11. https://doi.org/10.3389/fnbeh.2017.00035
- 49.
Girault JA (2012) Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Prog Mol Biol Transl Sci 106:33–62. doi: https://doi.org/10.1016/B978-0-12-396456-4.00006-7
- 50.
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG (2017) Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev 97:1351–1402. https://doi.org/10.1152/physrev.00019.2016
- 51.
Hill WF (1961) Effects of activity deprivation on choice of an activity incentive. J Comp Physiol Psychol 54:78–82. https://doi.org/10.1037/h0043817
- 52.
Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77. https://doi.org/10.1016/j.tins.2011.11.005
- 53.
Belke TW, Wagner JP (2005) The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms. Behav Process 68:165–172. https://doi.org/10.1016/j.beproc.2004.12.006
- 54.
Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413. https://doi.org/10.1176/appi.ajp.162.8.1403
- 55.
Self DW, Genova LM, Hope BT et al (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859. https://doi.org/10.1523/JNEUROSCI.18-05-01848.1998
- 56.
Carlezon WA, Thome J, Olson VG, et al (1998) Regulation of cocaine reward by CREB. Science (80- ) 282:2272–2275. doi: https://doi.org/10.1126/science.282.5397.2272
- 57.
Barrot M, Olivier JDA, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci 99:11435–11440. https://doi.org/10.1073/pnas.172091899
- 58.
Alleweireldt AT, Kirschner KF, Blake CB, Neisewander JL (2003) D1-receptor drugs and cocaine-seeking behavior: investigation of receptor mediation and behavioral disruption in rats. Psychopharmacology 168:109–117. https://doi.org/10.1007/s00213-002-1305-x
Acknowledgements
The authors would like to thank Dr. Cathleen Kovarik for the generous use of her laboratory. We are also grateful to and would like to acknowledge Dr. Tyler Jacks and Dr. Alexander Dent for their gifting of plasmids used in this study.
Funding
The study was funded by the University of Missouri.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Supplemental Figure 1
(DOCX 123 kb)
Rights and permissions
About this article
Cite this article
Grigsby, K.B., Ruegsegger, G.N., Childs, T.E. et al. Overexpression of Protein Kinase Inhibitor Alpha Reverses Rat Low Voluntary Running Behavior. Mol Neurobiol 56, 1782–1797 (2019). https://doi.org/10.1007/s12035-018-1171-0
Received:
Accepted:
Published:
Issue Date:
Keywords
- Behavior
- Gene
- Brain
- Rescue
- Voluntary running
- Selective breeding