Advertisement

Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement

Article

Abstract

Resveratrol is a natural compound that mimics the antioxidant and antiaging effects of caloric restriction, mainly mediated through SIRT1, a deacetylase that induces longevity and neuroprotection. We aimed to analyze the effects of resveratrol on the brain status of control non-transgenic (NoTg) and AD transgenic (3xTg-AD) mice to discern the mechanisms involved in a potential inducement of resilience against age-related neurodegeneration and Alzheimer’s disease (AD). Mice were fed with a diet supplemented with 100 mg/kg of resveratrol from 2 months of age during 10 months. Resveratrol administration induced complete protection against memory loss and brain pathology in 3xTg-AD mice, and also induced cognitive enhancement in healthy NoTg mice. Resveratrol improved exploration and reduced anxiety in both mouse strains, indicative of well-being. Resveratrol reduced the presence of Aβ and p-tau pathology in the hippocampus of the 3xTg-AD mouse. Proteostasis analysis showed the following in both NoTg and 3xTg-AD mice: (i) increased levels of the amyloid-degrading enzyme neprilysin, (ii) reduction of the amyloidogenic secretase BACE1, and (iii) increase of proteasome protein levels and enhancement of proteasome activity. Resveratrol also increased AMPK protein levels, then upregulating the SIRT1 pathway, as shown by the activation of PGC-1α and CREB in both mice, resulting in further beneficial changes. Our data demonstrated that resveratrol induces cognitive enhancement and neuroprotection against amyloid and tau pathologies. Improvement of proteostasis by resveratrol, in both healthy and AD mice, suggests that it is a mechanism of brain resilience and defense against neurodegeneration caused by the accumulation of aberrant proteins.

Keywords

Resveratrol SIRT1 Proteasome Neuroprotection 3xTg-AD 

Notes

Acknowledgements

We acknowledge the use of mice derived from the colony established by Dr. Lydia Giménez-Llort at the Universitat Autònoma de Barcelona with progenitors provided by Dr. Frank M LaFerla, University of California Irvine.

Funding information

This study was supported by grants SAF2016-77703 and SAF2016-81716-REDC from Spanish MINECO and European Development Fund; 2017-SGR-106 from AGAUR and the CERCA Programme/Generalitat de Catalunya.

Compliance with Ethical Standards

Animal handling and experimental procedures were approved by the Ethics Committee for animal experimentation (CEEA) of the University of Barcelona (UB) (Ref: DAAM 6523, CEEA), in accordance with the Decree 214/1997 of the Generalitat of Catalonia and the Directive 2010/63/EU of the European Union for animal experiments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1157_MOESM1_ESM.docx (10 mb)
ESM 1 (DOCX 10.0 MB)
12035_2018_1157_MOESM2_ESM.docx (35 kb)
ESM 2 (DOCX 35.2 KB)

References

  1. 1.
    World Alzheimer Report (2016) Improving healthcare for people living with dementia. Alzheimer’s Disease International (ADI), LondonGoogle Scholar
  2. 2.
    Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152.  https://doi.org/10.1038/nrneurol.2011.2 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70.  https://doi.org/10.1111/ene.13439 PubMedCrossRefGoogle Scholar
  4. 4.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356.  https://doi.org/10.1126/science.1072994 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3 (7). doi: https://doi.org/10.1101/cshperspect.a004457
  6. 6.
    Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73(4):504–517.  https://doi.org/10.1111/j.1365-2125.2011.04134.x PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203.  https://doi.org/10.1016/j.pharep.2014.09.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340PubMedCrossRefGoogle Scholar
  9. 9.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506.  https://doi.org/10.1038/nrd2060 PubMedCrossRefGoogle Scholar
  10. 10.
    Malhotra A, Bath S, Elbarbry F (2015) An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol. Oxidative Med Cell Longev 2015:803971.  https://doi.org/10.1155/2015/803971 CrossRefGoogle Scholar
  11. 11.
    Novelle MG, Wahl D, Dieguez C, Bernier M, de Cabo R (2015) Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev 21:1–15.  https://doi.org/10.1016/j.arr.2015.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2–3):375–383.  https://doi.org/10.1007/s12035-010-8111-y PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218.  https://doi.org/10.3389/fnagi.2014.00218 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ahmed T, Javed S, Javed S, Tariq A, Samec D, Tejada S, Nabavi SF, Braidy N et al (2017) Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54(4):2622–2635.  https://doi.org/10.1007/s12035-016-9839-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403(1):142–149.  https://doi.org/10.1111/nyas.13431 PubMedCrossRefGoogle Scholar
  16. 16.
    Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, Brewer JB, Rissman RA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16):1383–1391.  https://doi.org/10.1212/WNL.0000000000002035 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14(1):1.  https://doi.org/10.1186/s12974-016-0779-0 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34(23):7862–7870.  https://doi.org/10.1523/JNEUROSCI.0385-14.2014 PubMedCrossRefGoogle Scholar
  19. 19.
    Evans HM, Howe PR, Wong RH (2017) Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients 9(1).  https://doi.org/10.3390/nu9010027
  20. 20.
    Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118.  https://doi.org/10.1016/j.neuint.2008.10.008 PubMedCrossRefGoogle Scholar
  21. 21.
    Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285(12):9100–9113.  https://doi.org/10.1074/jbc.M109.060061 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Porquet D, Grinan-Ferre C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallas M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42(4):1209–1220.  https://doi.org/10.3233/JAD-140444 PubMedCrossRefGoogle Scholar
  23. 23.
    Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179.  https://doi.org/10.1038/sj.emboj.7601758 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264.  https://doi.org/10.1371/journal.pone.0002264 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 110(5):1445–1456.  https://doi.org/10.1111/j.1471-4159.2009.06228.x PubMedCrossRefGoogle Scholar
  26. 26.
    Porquet D, Casadesus G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegri C, Sanfeliu C et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr) 35(5):1851–1865.  https://doi.org/10.1007/s11357-012-9489-4 CrossRefGoogle Scholar
  27. 27.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295.  https://doi.org/10.1146/annurev.pathol.4.110807.092250 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 33(9):494–501.  https://doi.org/10.1016/j.tips.2012.05.007 PubMedCrossRefGoogle Scholar
  29. 29.
    Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483.  https://doi.org/10.1016/j.neuron.2014.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Gimenez-Llort L, Sarkis C et al (2017) SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol 54(7):5604–5619.  https://doi.org/10.1007/s12035-016-0087-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195.  https://doi.org/10.1074/jbc.M501250200 PubMedCrossRefGoogle Scholar
  32. 32.
    Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624.  https://doi.org/10.1111/j.1747-0285.2009.00901.x PubMedCrossRefGoogle Scholar
  33. 33.
    Bitterman JL, Chung JH (2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 72(8):1473–1488.  https://doi.org/10.1007/s00018-014-1808-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433.  https://doi.org/10.1016/j.cell.2012.01.017 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690.  https://doi.org/10.1016/j.cmet.2012.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110PubMedCrossRefGoogle Scholar
  37. 37.
    Chiang MC, Nicol CJ, Cheng YC (2018) Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem Int 115:1–10.  https://doi.org/10.1016/j.neuint.2017.10.002 PubMedCrossRefGoogle Scholar
  38. 38.
    Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382.  https://doi.org/10.1074/jbc.M508246200 PubMedCrossRefGoogle Scholar
  39. 39.
    Regitz C, Fitzenberger E, Mahn FL, Dussling LM, Wenzel U (2016) Resveratrol reduces amyloid-beta (Abeta(1)(−)(4)(2))-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 55(2):741–747.  https://doi.org/10.1007/s00394-015-0894-1 PubMedCrossRefGoogle Scholar
  40. 40.
    Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659.  https://doi.org/10.1038/ncomms6659 PubMedCrossRefGoogle Scholar
  41. 41.
    Xin SH, Tan L, Cao X, Yu JT, Tan L (2018) Clearance of amyloid Beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res doi: https://doi.org/10.1007/s12640-018-9895-1
  42. 42.
    Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7(8):910–911PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6):995–1011.  https://doi.org/10.1111/febs.14332 PubMedCrossRefGoogle Scholar
  44. 44.
    Hashimoto S, Saido TC (2018) Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol 8 (4). doi: https://doi.org/10.1098/rsob.180024
  45. 45.
    Karpova A, Mikhaylova M, Thomas U, Knopfel T, Behnisch T (2006) Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J Neurosci 26(18):4949–4955.  https://doi.org/10.1523/JNEUROSCI.4573-05.2006 PubMedCrossRefGoogle Scholar
  46. 46.
    Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52(2):239–245.  https://doi.org/10.1016/j.neuron.2006.08.015 PubMedCrossRefGoogle Scholar
  47. 47.
    Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S et al (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J Cell Mol Med 20(7):1392–1407.  https://doi.org/10.1111/jcmm.12817 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066.  https://doi.org/10.1126/science.1165946 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471.  https://doi.org/10.1038/386463a0 PubMedCrossRefGoogle Scholar
  50. 50.
    Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147.  https://doi.org/10.1038/emm.2014.117 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, Gimenez-Llort L, Sanfeliu C (2016) Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging. J Gerontol A Biol Sci Med Sci 71(1):40–49.  https://doi.org/10.1093/gerona/glv005 PubMedCrossRefGoogle Scholar
  53. 53.
    Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81.  https://doi.org/10.1186/1471-2202-9-81 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Garcia-Mesa Y, Gimenez-Llort L, Lopez LC, Venegas C, Cristofol R, Escames G, Acuna-Castroviejo D, Sanfeliu C (2012) Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 33(6):1124 e1113–1124 e1129.  https://doi.org/10.1016/j.neurobiolaging.2011.11.016 CrossRefGoogle Scholar
  55. 55.
    Corpas R, Hernandez-Pinto AM, Porquet D, Hernandez-Sanchez C, Bosch F, Ortega-Aznar A, Comellas F, de la Rosa EJ et al (2017) Proinsulin protects against age-related cognitive loss through anti-inflammatory convergent pathways. Neuropharmacology 123:221–232.  https://doi.org/10.1016/j.neuropharm.2017.06.014 PubMedCrossRefGoogle Scholar
  56. 56.
    Revilla S, Ursulet S, Alvarez-Lopez MJ, Castro-Freire M, Perpina U, Garcia-Mesa Y, Bortolozzi A, Gimenez-Llort L et al (2014) Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 20(11):961–972.  https://doi.org/10.1111/cns.12312 PubMedCrossRefGoogle Scholar
  57. 57.
    Conte A, Pellegrini S, Tagliazucchi D (2003) Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Res Bull 62(1):29–38PubMedCrossRefGoogle Scholar
  58. 58.
    Cristofol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallas M, Sanfeliu C (2012) Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res 52(3):271–281.  https://doi.org/10.1111/j.1600-079X.2011.00939.x PubMedCrossRefGoogle Scholar
  59. 59.
    Liu GS, Zhang ZS, Yang B, He W (2012) Resveratrol attenuates oxidative damage and ameliorates cognitive impairment in the brain of senescence-accelerated mice. Life Sci 91(17–18):872–877.  https://doi.org/10.1016/j.lfs.2012.08.033 PubMedCrossRefGoogle Scholar
  60. 60.
    Wang R, Zhang Y, Li J, Zhang C (2017) Resveratrol ameliorates spatial learning memory impairment induced by Abeta1-42 in rats. Neuroscience 344:39–47.  https://doi.org/10.1016/j.neuroscience.2016.08.051 PubMedCrossRefGoogle Scholar
  61. 61.
    Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85.  https://doi.org/10.1186/1750-1326-6-85 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Apostolova LG, Zarow C, Biado K, Hurtz S, Boccardi M, Somme J, Honarpisheh H, Blanken AE et al (2015) Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimers Dement 11(2):139–150.  https://doi.org/10.1016/j.jalz.2015.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Raskin J, Cummings J, Hardy J, Schuh K, Dean RA (2015) Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr Alzheimer Res 12(8):712–722PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Riedel G, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B et al (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2(10):898–905.  https://doi.org/10.1038/13202 PubMedCrossRefGoogle Scholar
  65. 65.
    Laeremans A, Sabanov V, Ahmed T, Nys J, Van de Plas B, Vinken K, Woolley DG, Gantois I et al (2015) Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 220(3):1273–1290.  https://doi.org/10.1007/s00429-014-0722-z PubMedCrossRefGoogle Scholar
  66. 66.
    D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90PubMedCrossRefGoogle Scholar
  67. 67.
    Slevin M, Matou S, Zeinolabediny Y, Corpas R, Weston R, Liu D, Boras E, Di Napoli M et al (2015) Monomeric C-reactive protein—a key molecule driving development of Alzheimer’s disease associated with brain ischaemia? Sci Rep 5:13281.  https://doi.org/10.1038/srep13281 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Assini FL, Duzzioni M, Takahashi RN (2009) Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participation. Behav Brain Res 204(1):206–211.  https://doi.org/10.1016/j.bbr.2009.06.005 PubMedCrossRefGoogle Scholar
  69. 69.
    Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17(1):5–11.  https://doi.org/10.1101/lm.1650110 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shin IS, Carter M, Masterman D, Fairbanks L, Cummings JL (2005) Neuropsychiatric symptoms and quality of life in Alzheimer disease. Am J Geriatr Psychiatry 13(6):469–474.  https://doi.org/10.1176/appi.ajgp.13.6.469 PubMedCrossRefGoogle Scholar
  71. 71.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608.  https://doi.org/10.15252/emmm.201606210 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Agostinho P, Pliassova A, Oliveira CR, Cunha RA (2015) Localization and trafficking of amyloid-beta protein precursor and secretases: impact on Alzheimer’s disease. J Alzheimers Dis 45(2):329–347.  https://doi.org/10.3233/JAD-142730 PubMedCrossRefGoogle Scholar
  73. 73.
    Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl 1):S69–S73.  https://doi.org/10.1212/01.wnl.0000192107.17175.39 PubMedCrossRefGoogle Scholar
  74. 74.
    Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080):304–307PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464.  https://doi.org/10.1172/JCI20864 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Haniu M, Denis P, Young Y, Mendiaz EA, Fuller J, Hui JO, Bennett BD, Kahn S et al (2000) Characterization of Alzheimer’s beta-secretase protein BACE. A pepsin family member with unusual properties. J Biol Chem 275(28):21099–21106.  https://doi.org/10.1074/jbc.M002095200 PubMedCrossRefGoogle Scholar
  77. 77.
    Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23(1–2):105–114.  https://doi.org/10.1385/JMN:23:1-2:105 PubMedCrossRefGoogle Scholar
  78. 78.
    Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, Disterhoft JF, Vassar R (2007) BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis 26(1):134–145.  https://doi.org/10.1016/j.nbd.2006.12.008 PubMedCrossRefGoogle Scholar
  79. 79.
    Spencer B, Marr RA, Rockenstein E, Crews L, Adame A, Potkar R, Patrick C, Gage FH et al (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci 9:109.  https://doi.org/10.1186/1471-2202-9-109 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, Muller FJ, Loring JF et al (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5(2):46.  https://doi.org/10.1186/scrt440 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Devi L, Ohno M (2015) A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 8:19.  https://doi.org/10.1186/s13041-015-0110-5 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, Hong KW, Kim CD (2014) Cilostazol suppresses beta-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-beta. J Neurosci Res 92(11):1581–1590.  https://doi.org/10.1002/jnr.23421 PubMedCrossRefGoogle Scholar
  83. 83.
    Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20.  https://doi.org/10.1016/j.pneurobio.2015.10.003 PubMedCrossRefGoogle Scholar
  84. 84.
    Lloret A, Fuchsberger T, Giraldo E, Vina J (2015) Molecular mechanisms linking amyloid beta toxicity and tau hyperphosphorylation in Alzheimers disease. Free Radic Biol Med 83:186–191.  https://doi.org/10.1016/j.freeradbiomed.2015.02.028 PubMedCrossRefGoogle Scholar
  85. 85.
    Avila J, Pallas N, Bolos M, Sayas CL, Hernandez F (2016) Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets 20(6):653–661.  https://doi.org/10.1517/14728222.2016.1131269 PubMedCrossRefGoogle Scholar
  86. 86.
    Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966.  https://doi.org/10.1016/j.neuron.2010.08.044 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Irwin DJ, Cohen TJ, Grossman M, Arnold SE, Xie SX, Lee VM, Trojanowski JQ (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135(Pt 3):807–818.  https://doi.org/10.1093/brain/aws013 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154–1162.  https://doi.org/10.1038/nm.3951 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tomita T, Hamazaki J, Hirayama S, McBurney MW, Yashiroda H, Murata S (2015) Sirt1-deficiency causes defective protein quality control. Sci Rep 5:12613.  https://doi.org/10.1038/srep12613 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714.  https://doi.org/10.1093/hmg/ddh083 PubMedCrossRefGoogle Scholar
  91. 91.
    Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7):1700–1706.  https://doi.org/10.1523/JNEUROSCI.4330-03.2004 PubMedCrossRefGoogle Scholar
  92. 92.
    Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439PubMedCrossRefGoogle Scholar
  93. 93.
    Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29(11):1607–1618.  https://doi.org/10.1016/j.neurobiolaging.2007.04.014 PubMedCrossRefGoogle Scholar
  94. 94.
    Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84(9):3033–3036PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68.  https://doi.org/10.1111/j.1460-9568.2006.05226.x PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cras P, Smith MA, Richey PL, Siedlak SL, Mulvihill P, Perry G (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol 89(4):291–295PubMedCrossRefGoogle Scholar
  97. 97.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196.  https://doi.org/10.1038/nature01960 PubMedCrossRefGoogle Scholar
  98. 98.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635.  https://doi.org/10.1091/mbc.E05-01-0033 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Johnson S, Imai SI (2018) NAD (+) biosynthesis, aging, and disease. F1000Res 7:132.  https://doi.org/10.12688/f1000research.12120.1 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122.  https://doi.org/10.1016/j.cell.2006.11.013 PubMedCrossRefGoogle Scholar
  101. 101.
    Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B et al (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59(3):554–563.  https://doi.org/10.2337/db09-0482 PubMedCrossRefGoogle Scholar
  102. 102.
    Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35(3):146–154.  https://doi.org/10.1016/j.tips.2013.12.004 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060.  https://doi.org/10.1038/nature07813 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53(1):79–89.  https://doi.org/10.1016/j.neuron.2006.11.024 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22(2):153–169.  https://doi.org/10.1515/RNS.2011.018 PubMedCrossRefGoogle Scholar
  106. 106.
    Li Z, Fang F, Wang Y, Wang L (2016) Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacol Biochem Behav 146-147:21–27.  https://doi.org/10.1016/j.pbb.2016.04.007 PubMedCrossRefGoogle Scholar
  107. 107.
    Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95.  https://doi.org/10.14348/molcells.2016.2318 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118.  https://doi.org/10.1038/nature03354 PubMedCrossRefGoogle Scholar
  109. 109.
    Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280(16):16456–16460.  https://doi.org/10.1074/jbc.M501485200 PubMedCrossRefGoogle Scholar
  110. 110.
    Palomera-Avalos V, Grinan-Ferre C, Izquierdo V, Camins A, Sanfeliu C, Pallas M (2017) Metabolic stress induces cognitive disturbances and inflammation in aged mice: protective role of resveratrol. Rejuvenation Res 20(3):202–217.  https://doi.org/10.1089/rej.2016.1885 PubMedCrossRefGoogle Scholar
  111. 111.
    Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105.  https://doi.org/10.1097/MOL.0b013e328328d0a4 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Valenti D, de Bari L, de Rasmo D, Signorile A, Henrion-Caude A, Contestabile A, Vacca RA (2016) The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta 1862(6):1093–1104.  https://doi.org/10.1016/j.bbadis.2016.03.003 PubMedCrossRefGoogle Scholar
  113. 113.
    Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristofol R et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24(3):421–454.  https://doi.org/10.3233/JAD-2011-101635 PubMedCrossRefGoogle Scholar
  114. 114.
    Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55(3):2085–2101.  https://doi.org/10.1007/s12035-017-0448-z PubMedCrossRefGoogle Scholar
  115. 115.
    Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522.  https://doi.org/10.3892/br.2016.630 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol 53(9):6078–6090.  https://doi.org/10.1007/s12035-015-9515-5 PubMedCrossRefGoogle Scholar
  117. 117.
    Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM, Zhang X (2013) Dynamic mobilization of PGC-1alpha mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 18(7):786–799.  https://doi.org/10.1007/s10495-013-0837-3 PubMedCrossRefGoogle Scholar
  118. 118.
    Banerjee K, Munshi S, Frank DE, Gibson GE (2015) Abnormal glucose metabolism in Alzheimer’s disease: relation to autophagy/mitophagy and therapeutic approaches. Neurochem Res 40(12):2557–2569.  https://doi.org/10.1007/s11064-015-1631-0 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sweeney G, Song J (2016) The association between PGC-1alpha and Alzheimer’s disease. Anat Cell Biol 49(1):1–6.  https://doi.org/10.5115/acb.2016.49.1.1 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC and IDIBAPSBarcelonaSpain
  2. 2.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  3. 3.Faculty of Pharmacy and Food Sciences, Institut de NeurociènciesUniversitat de Barcelona and CIBERNEDBarcelonaSpain

Personalised recommendations