Molecular Neurobiology

, Volume 56, Issue 2, pp 1451–1460 | Cite as

Heme Oxygenase Inhibition Sensitizes Neuroblastoma Cells to Carfilzomib

  • Ignazio Barbagallo
  • Cesarina GiallongoEmail author
  • Giovanni Li Volti
  • Alfio Distefano
  • Giuseppina Camiolo
  • Marco Raffaele
  • Loredana Salerno
  • Valeria Pittalà
  • Valeria Sorrenti
  • Roberto Avola
  • Michelino Di Rosa
  • Luca Vanella
  • Francesco Di Raimondo
  • Daniele Tibullo


Neuroblastoma (NB) is an embryonic malignancy affecting the physiological development of adrenal medulla and paravertebral sympathetic ganglia in early infancy. Proteasome inhibitors (PIs) (i.e., carfilzomib (CFZ)) may represent a possible pharmacological treatment for solid tumors including NB. In the present study, we tested the effect of a novel non-competitive inhibitor of heme oxygenase-1 (HO-1), LS1/71, as a possible adjuvant therapy for the efficacy of CFZ in neuroblastoma cells. Our results showed that CFZ increased both HO-1 gene expression (about 18-fold) and HO activity (about 8-fold), following activation of the ER stress pathway. The involvement of HO-1 in CFZ-mediated cytotoxicity was further confirmed by the protective effect of pharmacological induction of HO-1, significantly attenuating cytotoxicity. In addition, HO-1 selective inhibition by a specific siRNA increased the cytotoxic effect following CFZ treatment in NB whereas SnMP, a competitive pharmacological inhibitor of HO, showed no changes in cytotoxicity. Our data suggest that treatment with CFZ produces ER stress in NB without activation of CHOP-mediated apoptosis, whereas co-treatment with CFZ and LS1/71 led to apoptosis activation and CHOP expression induction. In conclusion, our study showed that treatment with the non-competitive inhibitor of HO-1, LS1 / 71, increased cytotoxicity mediated by CFZ, triggering apoptosis following ER stress activation. These results suggest that PIs may represent a possible pharmacological treatment for solid tumors and that HO-1 inhibition may represent a possible strategy to overcome chemoresistance and increase the efficacy of chemotherapic regimens.


Heme oxygenase Inhibitors Proteasome Neuroblastoma Carfilzomib 



This work was financially supported by Fir 2017 from the University of Catania (PI: Loredana Salerno).


  1. 1.
    Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L, Pahlman S (1996) A developmental model of neuroblastoma: differentiating stroma-poor tumors' progress along an extra-adrenal chromaffin lineage. Lab Invest 75(5):659–675Google Scholar
  2. 2.
    Lev N, Melamed E, Offen D (2006) Proteasomal inhibition hypersensitizes differentiated neuroblastoma cells to oxidative damage. Neurosci Lett 399(1–2):27–32. CrossRefGoogle Scholar
  3. 3.
    Johnson DE (2015) The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22(1):T1–T17. CrossRefGoogle Scholar
  4. 4.
    Furfaro AL, Piras S, Domenicotti C, Fenoglio D, De Luigi A, Salmona M, Moretta L, Marinari UM et al (2016) Role of Nrf2, HO-1 and GSH in neuroblastoma cell resistance to bortezomib. PLoS One 11(3):e0152465. CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guan S, Zhao Y, Lu J, Yu Y, Sun W, Mao X, Chen Z, Xu X et al (2016) Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget 7(46):75914–75925. CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mody R, Zhao L, Yanik GA, Opipari V (2017) Phase I study of bortezomib in combination with irinotecan in patients with relapsed/refractory high-risk neuroblastoma. Pediatr Blood Cancer 64 (11).
  7. 7.
    Furfaro AL, Piras S, Passalacqua M, Domenicotti C, Parodi A, Fenoglio D, Pronzato MA, Marinari UM et al (2014) HO-1 up-regulation: A key point in high-risk neuroblastoma resistance to bortezomib. Biochim Biophys Acta 1842(4):613–622. CrossRefGoogle Scholar
  8. 8.
    Tibullo D, Giallongo C, Puglisi F, Tomassoni D, Camiolo G, Cristaldi M, Brundo MV, Anfuso CD et al (2017) Effect of lipoic acid on the biochemical mechanisms of resistance to bortezomib in SH-SY5Y neuroblastoma cells. Mol Neurobiol 55:3344–3350. CrossRefGoogle Scholar
  9. 9.
    Valentiner U, Haane C, Nehmann N, Schumacher U (2009) Effects of bortezomib on human neuroblastoma cells in vitro and in a metastatic xenograft model. Anticancer Res 29(4):1219–1225Google Scholar
  10. 10.
    Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309. CrossRefGoogle Scholar
  11. 11.
    Jiang T, Chen N, Zhao F, Wang XJ, Kong B, Zheng W, Zhang DD (2010) High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res 70(13):5486–5496. CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi S (2008) Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135(4):1358–1368. 1368 e1351–1354CrossRefGoogle Scholar
  13. 13.
    Tibullo D, Barbagallo I, Giallongo C, La Cava P, Parrinello N, Vanella L, Stagno F, Palumbo GA et al (2013) Nuclear translocation of heme oxygenase-1 confers resistance to imatinib in chronic myeloid leukemia cells. Curr Pharm Des 19(15):2765–2770CrossRefGoogle Scholar
  14. 14.
    Salerno L, Romeo G, Modica MN, Amata E, Sorrenti V, Barbagallo I, Pittala V (2017) Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem 142:163–178. CrossRefGoogle Scholar
  15. 15.
    Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: Is it a false friend? Antioxid Redox Signal 9(12):2099–2117. CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Barbagallo I, Galvano F, Frigiola A, Cappello F, Riccioni G, Murabito P, D'Orazio N, Torella M et al (2013) Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases. Antioxid Redox Signal 18(5):507–521. CrossRefGoogle Scholar
  17. 17.
    Barbagallo I, Nicolosi A, Calabrese G, David S, Cimino S, Madonia M, Cappello F (2014) The role of the heme oxygenase system in the metabolic syndrome. Curr Pharm Des 20(31):4970–4974CrossRefGoogle Scholar
  18. 18.
    Li Volti G, Tibullo D, Vanella L, Giallongo C, Di Raimondo F, Forte S, Di Rosa M, Signorelli SS et al (2017) The Heme oxygenase system in hematological malignancies. Antioxid Redox Signal 27(6):363–377. CrossRefGoogle Scholar
  19. 19.
    Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG (1997) Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med Soc 214(1):54–61CrossRefGoogle Scholar
  20. 20.
    Maines MD, Abrahamsson PA (1996) Expression of heme oxygenase-1 (HSP32) in human prostate: Normal, hyperplastic, and tumor tissue distribution. Urology 47(5):727–733CrossRefGoogle Scholar
  21. 21.
    Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, Autschbach F, Meuer S et al (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11(10):3790–3798. CrossRefGoogle Scholar
  22. 22.
    Furfaro AL, Macay JR, Marengo B, Nitti M, Parodi A, Fenoglio D, Marinari UM, Pronzato MA et al (2012) Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 52(2):488–496. CrossRefGoogle Scholar
  23. 23.
    Barbagallo I, Parenti R, Zappala A, Vanella L, Tibullo D, Pepe F, Onni T, Li Volti G (2015) Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma. Acta Histochem 117(8):705–711. CrossRefGoogle Scholar
  24. 24.
    Vanella L, Barbagallo I, Tibullo D, Forte S, Zappala A, Li Volti G (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7(42):69075–69086. CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Morioka I, Wong RJ, Abate A, Vreman HJ, Contag CH, Stevenson DK (2006) Systemic effects of orally-administered zinc and tin (IV) metalloporphyrins on heme oxygenase expression in mice. Pediatr Res 59(5):667–672. CrossRefGoogle Scholar
  26. 26.
    Pittala V, Salerno L, Romeo G, Modica MN, Siracusa MA (2013) A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem 20(30):3711–3732CrossRefGoogle Scholar
  27. 27.
    Sorrenti V, Guccione S, Di Giacomo C, Modica MN, Pittala V, Acquaviva R, Basile L, Pappalardo M et al (2012) Evaluation of imidazole-based compounds as heme oxygenase-1 inhibitors. Chem Biol Drug Des 80(6):876–886. CrossRefGoogle Scholar
  28. 28.
    Salerno L, Pittala V, Romeo G, Modica MN, Marrazzo A, Siracusa MA, Sorrenti V, Di Giacomo C et al (2015) Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines. Eur J Med Chem 96:162–172. CrossRefGoogle Scholar
  29. 29.
    Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A et al (2017) Heme oxygenase database (HemeOxDB) and QSAR analysis of isoform 1 inhibitors. ChemMedChem 12(22):1873–1881. CrossRefGoogle Scholar
  30. 30.
    Salerno L, Pittala V, Romeo G, Modica MN, Siracusa MA, Di Giacomo C, Acquaviva R, Barbagallo I et al (2013) Evaluation of novel aryloxyalkyl derivatives of imidazole and 1,2,4-triazole as heme oxygenase-1 (HO-1) inhibitors and their antitumor properties. Bioorg Med Chem 21(17):5145–5153. CrossRefGoogle Scholar
  31. 31.
    Pittala V, Siracusa MA, Modica MN, Salerno L, Pedretti A, Vistoli G, Cagnotto A, Mennini T et al (2011) Synthesis and molecular modeling of 1H-pyrrolopyrimidine-2,4-dione derivatives as ligands for the alpha1-adrenoceptors. Bioorg Med Chem 19(17):5260–5276. CrossRefGoogle Scholar
  32. 32.
    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol Rev 86(2):583–650. CrossRefGoogle Scholar
  33. 33.
    Tibullo D, Barbagallo I, Giallongo C, La Cava P, Branca A, Conticello C, Stagno F, Chiarenza A et al (2012) Effects of second-generation tyrosine kinase inhibitors towards osteogenic differentiation of human mesenchymal cells of healthy donors. Hematol Oncol 30(1):27–33. CrossRefGoogle Scholar
  34. 34.
    Li H, Chen Z, Hu T, Wang L, Yu Y, Zhao Y, Sun W, Guan S et al (2016) Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment. Sci Rep 6:34397. CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, Saccone S, Godos J et al (2016) Heme oxygenase-1 nuclear translocation regulates bortezomibinduced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget 7(20):28868–28880. CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Salerno L, Amata E, Romeo G, Marrazzo A, Prezzavento O, Floresta G, Sorrenti V, Barbagallo I et al (2018) Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur J Med Chem 148:54–62. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ignazio Barbagallo
    • 1
  • Cesarina Giallongo
    • 2
    Email author
  • Giovanni Li Volti
    • 2
  • Alfio Distefano
    • 2
  • Giuseppina Camiolo
    • 2
  • Marco Raffaele
    • 1
  • Loredana Salerno
    • 1
  • Valeria Pittalà
    • 1
  • Valeria Sorrenti
    • 1
  • Roberto Avola
    • 2
  • Michelino Di Rosa
    • 2
  • Luca Vanella
    • 1
  • Francesco Di Raimondo
    • 3
  • Daniele Tibullo
    • 2
  1. 1.Department of Drug Science, Biochemistry SectionUniversity of CataniaCataniaItaly
  2. 2.Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
  3. 3.Department of Surgery, Medical and Surgical SpecialtiesUniversity of CataniaCataniaItaly

Personalised recommendations