Advertisement

Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke

  • Wu Chen
  • Bharati Sinha
  • Yi Li
  • Larry Benowitz
  • Qinhua Chen
  • Zhenghong Zhang
  • Nirav J. Patel
  • Ali M. Aziz-Sultan
  • Antonio E. Chiocca
  • Xin Wang
Article

Abstract

Ischemic stroke (IS) is a leading disease with high mortality and disability, as well as with limited therapeutic window. Biomarkers for earlier diagnosis of IS have long been pursued. Family and twin studies confirm that genetic variations play an important role in IS pathogenesis. Besides DNA mutations found previously by genetic linkage analysis for monogenic IS (Mendelian inheritance), recent studies using genome-wide associated study (GWAS) and microRNA expression profiling have resulted in a large number of DNA and microRNA biomarkers in polygenic IS (sporadic IS), especially in different IS subtypes and imaging phenotypes. The present review summarizes genetic markers discovered by clinical studies and discusses their pathogenic molecular mechanisms involved in developmental or regenerative anomalies of blood vessel walls, neuronal apoptosis, excitotoxic death, inflammation, neurogenesis, and angiogenesis. The possible impact of environment on genetics is addressed as well. We also include a perspective on further studies and clinical application of these IS biomarkers.

Keywords

Biomarkers Genetics Ischemic stroke MicroRNA Monogenic Polygenic 

Notes

Funding Information

This work was supported by grants from the Bill and Melinda Gates Foundation (to X. W.), Grant/Award Number: 01075000191 and OPP1099070; the Brigham and Women’s Hospital BRI Fund to Sustain Research Excellence (to X. W.); the National Institutes of Health/National Institute of Neurological Disorders and Stroke (to X. W.), Grant/Award Number: NS055072; Adelson Medical Research Foundation (to L. B., Subcontractor X. W.); National Natural Science Foundation of China (to Z. Z.), Grant Number: 81344438.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Feigin VL, Norrving B, Mensah GA (2017) Global burden of stroke. Circ Res 120:439–448PubMedCrossRefGoogle Scholar
  2. 2.
    Pandya RS, Mao L, Zhou H et al (2011) Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent Nerv Syst Agents Med Chem 11:81–97PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics-2014 update a report from the American Heart Association. Circulation 131:29–322Google Scholar
  4. 4.
    Lorenz MW, Lauer A, Foerch C (2015) Quantifying the benefit of prehospital rapid treatment in acute stroke: benchmark for future innovative clinical trials. Stroke 46:3168–3176PubMedCrossRefGoogle Scholar
  5. 5.
    Chen P, Goldberg DE, Kolb B et al (2002) Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A 99:9031–9036PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zai L et al (2011) Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci 31:5977–5988PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zhou H, Wang J, Jiang J et al (2014) N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 34:2967–2978PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang X, Figueroa BE, Stavrovskaya IG et al (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40:1877–1885PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Müller B, Wilcke A, Boulesteix AL et al (2016) Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives. Hum Genet 135:259–272PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Adams HP, Bendixen BH, Kappelle LJ et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24:35–41PubMedCrossRefGoogle Scholar
  11. 11.
    Gulli G, Rutten-Jacobs LC, Kalra L et al (2016) Differences in the distribution of stroke subtypes in a UK black stroke population-final results from the South London ethnicity and stroke study. BMC Med 14:77.  https://doi.org/10.1186/s12916-016-0618-2 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bevan S, Traylor M, Adibsamii P et al (2012) Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 43:3161–3167PubMedCrossRefGoogle Scholar
  13. 13.
    Bersano A, Markus HS, Quaglini S et al (2016) Clinical pregenetic screening for stroke monogenic diseases: results from Lombardia GENS Registry. Stroke 47:1702–1709PubMedCrossRefGoogle Scholar
  14. 14.
    Fox CS, Polak JF, Chazaro I et al (2003) Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham heart study. Stroke 34:397–401PubMedCrossRefGoogle Scholar
  15. 15.
    Flossmann E, Schulz UG, Rothwell PM (2004) Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 35:212–227PubMedCrossRefGoogle Scholar
  16. 16.
    Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109PubMedCrossRefGoogle Scholar
  17. 17.
    Tan RYY, Markus HS (2015) Monogenic causes of stroke: now and the future. J Neurol 262:2601–2616PubMedCrossRefGoogle Scholar
  18. 18.
    Lindgren A (2014) Stroke genetics: A review and update. J Stroke 16:114–123PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689PubMedCrossRefGoogle Scholar
  20. 20.
    Tikka S, Baumann M, Siitonen M et al (2014) CADASIL and CARASIL. Brain Pathol 24:525–544PubMedCrossRefGoogle Scholar
  21. 21.
    Kilarski LL, Ruttenjacobs LC, Bevan S et al (2015) Prevalence of CADASIL and Fabry disease in a cohort of MRI defined younger onset lacunar stroke. PLoS One 10:21–24CrossRefGoogle Scholar
  22. 22.
    Ince B, Benbir G, Siva A et al (2014) Clinical and radiological features in CADASIL and NOTCH3- negative patients: a multicenter study from Turkey. Eur Neurol 72:125–131PubMedCrossRefGoogle Scholar
  23. 23.
    Liu X, Zuo Y, Sun W et al (2015) The genetic spectrum and the evaluation of CADASIL screening scale in Chinese patients with NOTCH3 mutations. J Neurol Sci 354:63–69PubMedCrossRefGoogle Scholar
  24. 24.
    Hara K, Shiga A, Fukutake T et al (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. New Engl J Med 360:1729–1739PubMedCrossRefGoogle Scholar
  25. 25.
    Nozaki H, Nishizawa M, Onodera O (2014) Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45:3447–3453PubMedCrossRefGoogle Scholar
  26. 26.
    Richards A, Am VDM, Jen JC et al (2007) C-terminal truncations in human 3′-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070PubMedCrossRefGoogle Scholar
  27. 27.
    Kolar GR, Kothari PH, Khanlou N et al (2014) Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol 24:510–518PubMedCrossRefGoogle Scholar
  28. 28.
    Stam AH, Kothari PH, Shaikh A et al (2016) Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 139:2909–2922PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Alamowitch S, Plaisier E, Favrole P et al (2009) Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 73:1873–1882PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sibon I, Coupry I, Menegon P et al (2007) COL4A1, mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 62:177–184PubMedCrossRefGoogle Scholar
  31. 31.
    Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:513–518CrossRefGoogle Scholar
  32. 32.
    Peters FP, Vermeulen A, Kho TL (2001) Anderson-fabry's disease: α galactosidase deficiency. Lancet 357:138–140PubMedCrossRefGoogle Scholar
  33. 33.
    Moore DF, Kaneski CR, Askari H et al (2007) The cerebral vasculopathy of Fabry disease. J Neurol Sci 257:258–263PubMedCrossRefGoogle Scholar
  34. 34.
    Sims K, Politei J, Banikazemi M et al (2009) Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 40:788–794PubMedCrossRefGoogle Scholar
  35. 35.
    Ashley-Koch A, Yang Q, Olney RS (2000) Sickle hemoglobin (HbS) allele and sickle cell disease: a HuGE review. Am J Epidemiol 151:839–845PubMedCrossRefGoogle Scholar
  36. 36.
    Ohenefrempong K, Weiner SJ, Sleeper LA et al (1998) Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91:288–294Google Scholar
  37. 37.
    Handford PA (2000) Fibrillin-1, a calcium binding protein of extracellular matrix. Biochim Biophys Acta 1498:84–90PubMedCrossRefGoogle Scholar
  38. 38.
    Dietz HC (1991) Marfan syndrome caused by a recurrent de novo missense mutation, in the fibrillin gene. Nature 352:337–339PubMedCrossRefGoogle Scholar
  39. 39.
    Wityk RJ, Zanferrari C, Oppenheimer S (2002) Neurovascular complications of marfan syndrome: a retrospective, hospital-based study. Stroke 33:680–684PubMedCrossRefGoogle Scholar
  40. 40.
    Testai FD, Gorelick PB (2010) Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol 67:148–153PubMedGoogle Scholar
  41. 41.
    Kraus JP, Janosík M, Kozich V et al (1999) Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat 13:362–375PubMedCrossRefGoogle Scholar
  42. 42.
    Alehan F, Saygi S, Gedik S et al (2010) Stroke in early childhood due to homocystinuria. Pediatr Neurol 43:294–296PubMedCrossRefGoogle Scholar
  43. 43.
    Shen MH, Harper PS, Upadhyaya M (1996) Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet 33:2–17PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ballabio E, Bersano A, Bresolin N et al (2007) Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab 27:1649–1662PubMedCrossRefGoogle Scholar
  45. 45.
    Créange A, Zeller J, Rostaing-Rigattieri S et al (1999) Neurological complications of neurofibromatosis type 1 in adulthood. Brain 122:473–481PubMedCrossRefGoogle Scholar
  46. 46.
    Terry AR, Jordan JT, Schwamm L et al (2016) Increased risk of cerebrovascular disease among patients with neurofibromatosis type 1: population-based approach. Stroke 47:60–65PubMedCrossRefGoogle Scholar
  47. 47.
    Sakuta R, Goto Y, Horai S et al (1993) Mitochondrial DNA mutations at nucleotide positions 3243 and 3271 in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: a comparative study. J Neurol Sci 115:158–160PubMedCrossRefGoogle Scholar
  48. 48.
    El-Hattab AW, Adesina AM, Jones J et al (2015) MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 116:4–12PubMedCrossRefGoogle Scholar
  49. 49.
    Li R, Xiao HF, Lyu JH et al (2016) Differential diagnosis of mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and ischemic stroke using 3D pseudocontinuous arterial spin labeling. J Magn Resone Imaging 45:199–2064CrossRefGoogle Scholar
  50. 50.
    Falcone GJ, Malik R, Dichgans M et al (2014) Current concepts and clinical applications of stroke genetics. Lancet Neurol 13:405–418PubMedCrossRefGoogle Scholar
  51. 51.
    Maasz A, Melegh B (2010) Three periods of one and a half decade of ischemic stroke susceptibility gene research: lessons we have learned. Genome Med.  https://doi.org/10.1186/gm185
  52. 52.
    Helgadottir A, Manolescu A, Thorleifsson G et al (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36:233–239PubMedCrossRefGoogle Scholar
  53. 53.
    Gretarsdottir S, Thorleifsson G, Reynisdottir ST et al (2003) The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 35:131–138PubMedCrossRefGoogle Scholar
  54. 54.
    Dixon RA, Diehl RE, Opas E et al (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343:282–284PubMedCrossRefGoogle Scholar
  55. 55.
    Zintzaras E, Rodopoulou P, Sakellaridis N (2009) Variants of the arachidonate 5-lipoxygenase- activating protein (ALOX5AP) gene and risk of stroke: a HuGE gene-disease association review and meta-analysis. Am J Epidemiol 169:523–532PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang R, Guo X, Li X et al (2014) Arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene rs4073259 polymorphism not associated with ischemic stroke in the northeastern Chinese Han population. Clin Neurol Neurosurg 119:64–69PubMedCrossRefGoogle Scholar
  57. 57.
    Rampersad SN, Ovens JD, Huston E et al (2010) Cyclic AMP phosphodiesterase 4D (PDE4D) tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J Biol Chem 285:33614–33622PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bevan S, Dichgans M, Gschwendtner A et al (2008) Variation in the PDE4D gene and ischemic stroke risk: a systematic review and meta-analysis on 5200 cases and 6600 controls. Stroke 39:1966–1971PubMedCrossRefGoogle Scholar
  59. 59.
    Liu X, Zhu R, Li L et al (2013) Genetic polymorphism in PDE4D gene and risk of ischemic stroke in Chinese population: a meta-analysis. PLoS One 8:2344–2348Google Scholar
  60. 60.
    Gretarsdottir S, Thorleifsson G, Manolescu A et al (2008) Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol 64:402–409PubMedCrossRefGoogle Scholar
  61. 61.
    Bellenguez C, Bevan S, Gschwendtner A et al (2012) Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 44:328–333PubMedCrossRefGoogle Scholar
  62. 62.
    Neurol L (2016) Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 15:174–184CrossRefGoogle Scholar
  63. 63.
    Lemmens R, Buysschaert I, Geelen V et al (2010) The association of the 4q25 susceptibility variant for atrial fibrillation with stroke is limited to stroke of cardioembolic etiology. Stroke 41:54–61CrossRefGoogle Scholar
  64. 64.
    Gudbjartsson DF, Holm H, Gretarsdottir S et al (2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 41:876–878PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Traylor M, Farrall M, Holliday EG et al (2012) Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 11:951–962PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gschwendtner A, Bevan S, Cole JW et al (2009) Sequence variants on chromosome 9p21.3 confer risk of atherosclerotic stroke. Ann Neurol 65:531–539PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hu WL, Li SJ, Liu DT et al (2009) Genetic variants on chromosome 9p21 and ischemic stroke in Chinese. Brain Res Bull 79:431–435PubMedCrossRefGoogle Scholar
  69. 69.
    Holliday EG, Maguire JM, Evans TJ et al (2012) Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet 44:1147–1151PubMedCrossRefGoogle Scholar
  70. 70.
    Traylor M, Mäkelä KM, Kilarski LL et al (2014) A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet 10:e1004469.  https://doi.org/10.1371/journal.pgen.1004469 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yamada Y, Fuku N, Tanaka M et al (2009) Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis 207:144–149PubMedCrossRefGoogle Scholar
  72. 72.
    Zhan YH, Lin Y, Tong SJ et al (2015) The CELSR1 polymorphisms rs6007897 and rs4044210 are associated with ischaemic stroke in Chinese Han population. Ann Hum Biol 42:26–30PubMedCrossRefGoogle Scholar
  73. 73.
    Kubo M, Hata J, Ninomiya T et al (2007) A nonsynonymous SNP in PRKCH (protein kinase Cη ) increases the risk of cerebral infarction. Nat Genet 39:212–217PubMedCrossRefGoogle Scholar
  74. 74.
    Wu L, Shen Y, Liu X et al (2009) The 1425G/A SNP in PRKCH is associated with ischemic stroke and cerebral hemorrhage in a Chinese population. Stroke 40:2973–2976PubMedCrossRefGoogle Scholar
  75. 75.
    Lee TH, Ko TM, Chen CH et al (2016) Identification of PTCSC3 as a novel locus for large-vessel ischemic stroke: a genome-wide association study. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.115.003003
  76. 76.
    Williams FM, Carter AM, Hysi PG et al (2013) Ischemic stroke is associated with the ABO locus: the EuroCLOT study. Ann Neurol 73:16–31PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhang H, Zhang Z, Zhang J et al (2017) Fine-mapping of ABO gene identifies two novel SNPs associated with large artery atherosclerotic stroke in a Chinese Han population. Mol Neurobiol 54:2107–2113PubMedCrossRefGoogle Scholar
  78. 78.
    Ikram MA, Seshadri S, Bis JC et al (2009) Genomewide association studies of stroke. J Vasc Surg 50:1718–1728CrossRefGoogle Scholar
  79. 79.
    Zhang Z, Xu G, Wei Y et al (2015) Impact of chromosome 12p13 variants on ischemic stroke risk. Int J Neurosci 126:856–862Google Scholar
  80. 80.
    Kilarski LL, Achterberg S, Devan WJ et al (2014) Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 83:678–685Google Scholar
  81. 81.
    Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (2016) Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurol 15:695–707Google Scholar
  82. 82.
    Traylor M, Ruttenjacobs LC, Thijs V et al (2016) Genetic associations with white matter hyperintensities confer risk of lacunar stroke. Stroke 47:1174–1179Google Scholar
  83. 83.
    Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ.  https://doi.org/10.1136/bmj.c3666
  84. 84.
    Rost NS, Rahman RM, Biffi A et al (2010) White matter hyperintensity volume is increased in small vessel stroke subtypes. Neurology 75:1670–1677PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Atwood LD, Wolf PA, Heardcosta NL et al (2004) Genetic variation in white matter hyperintensity volume in the Framingham study. Stroke 35:1609–1613PubMedCrossRefGoogle Scholar
  86. 86.
    Adibsamii P, Devan W, Traylor M et al (2015) Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke. Stroke 46:348–353CrossRefGoogle Scholar
  87. 87.
    Paternoster L, Chen W, Sudlow CLM et al (2009) Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19 000 subjects. Stroke 40:2020–2026PubMedCrossRefGoogle Scholar
  88. 88.
    Fornage Myriam, Debette Stephanie, Bis JC et al (2011) Genome-wide association studies of cerebral white matter lesion burden. Ann Neurol 69:928–939PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Traylor M, Zhang CR, Adibsamii P et al (2015) Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology 86:146–153PubMedCrossRefGoogle Scholar
  90. 90.
    O'Leary DH, Polak JF, Kronmal RA et al (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22Google Scholar
  91. 91.
    Moskau S, Golla A, Grothe C et al (2005) Heritability of carotid artery atherosclerotic lesions: an ultrasound study in 154 families. Stroke 36:5–8PubMedCrossRefGoogle Scholar
  92. 92.
    Bis JC, Kavousi M, Franceschini N et al (2011) Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 43:940–947Google Scholar
  93. 93.
    Melton PE, Carless MA, Curran JE et al (2013) Genetic architecture of carotid artery intima-media thickness in Mexican Americans. Circ Cardiovasc Genet 6:211–221PubMedCrossRefGoogle Scholar
  94. 94.
    Xie G, Myint PK, Voora D et al (2015) Genome-wide association study on progression of carotid artery intima media thickness over 10 years in a Chinese cohort. Atherosclerosis 243:30–37PubMedCrossRefGoogle Scholar
  95. 95.
    Friedman RC, Farh KH, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Liu N, Zhang L, Wang Z et al (2017) MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget 8:19244–19254PubMedGoogle Scholar
  97. 97.
    Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572PubMedCrossRefGoogle Scholar
  98. 98.
    Zhou F, Guan Y, Chen Y et al (2013) miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. Int J Clin Exp Pathol 6:1826–1838Google Scholar
  99. 99.
    Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA Expression in Human Peripheral Blood Microvesicles. PLoS One.  https://doi.org/10.1371/annotation/b15ca816-7b62-4474-a568-6b60b8959742
  100. 100.
    Sepramaniam S, Tan JR, Tan KS et al (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15:1418–1432PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tan KS, Armugam A, Sepramaniam S et al (2009) Expression profile of microRNAs in young stroke patients. PLoS One 4:1067–1078Google Scholar
  102. 102.
    Wang W, Sun G, Zhang L et al (2014) Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J Stroke Cerebrovasc Dis 23:2607–2613PubMedCrossRefGoogle Scholar
  103. 103.
    Tan JR, Tan KS, Koo YX et al (2013) Blood microRNAs in low or no risk ischemic stroke patients. Int J Mol Sci 14:2072–2084PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang Y, Cheng L, Chen Y et al (2016) Clinical predictor and circulating microRNA profile expression in patients with early onset post-stroke depression. J Affect Disord 193:51–58PubMedCrossRefGoogle Scholar
  105. 105.
    Li P, Teng F, Gao F et al (2015) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35:433–447PubMedCrossRefGoogle Scholar
  106. 106.
    Glen C. Jickling, Bradley P et al (2014) MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One.  https://doi.org/10.1371/journal.pone.0099283 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sorensen SS, Nygaard AB, Nielsen MY et al (2014) MiRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5:711–718PubMedCrossRefGoogle Scholar
  108. 108.
    Wu J, Du K, Lu X (2015) Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int J Clin Exp Med 8:21071–21079PubMedPubMedCentralGoogle Scholar
  109. 109.
    Spinetti G, Fortunato O, Caporali A et al (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 112:707–715CrossRefGoogle Scholar
  110. 110.
    Leung LY, Chan CP, Leung YK et al (2014) Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 433:139–144PubMedCrossRefGoogle Scholar
  111. 111.
    Zhou J, Zhang J (2014) Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep 10:971–976PubMedCrossRefGoogle Scholar
  112. 112.
    Wang Y, Huang J, Ma Y et al (2015) MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35:1977–1984PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Long G, Wang F, Li H et al (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:1–10CrossRefGoogle Scholar
  114. 114.
    Peng G, Yuan Y, Wu S et al (2015) MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl Stroke Res 6:437–445PubMedCrossRefGoogle Scholar
  115. 115.
    Ni J, Wang X, Chen S et al (2015) MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 49:75–85PubMedCrossRefGoogle Scholar
  116. 116.
    Gong Z, Zhao S, Zhang J et al (2016) Initial research on the relationship between let-7 family members in the serum and massive cerebral infarction. J Neurol Sci 361:150–157PubMedCrossRefGoogle Scholar
  117. 117.
    Jickling GC, Ander BP, Shroff N et al (2016) Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology 87:2198–2205PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Liu Y, Zhang J, Han R et al (2015) Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci 22:291–295PubMedCrossRefGoogle Scholar
  119. 119.
    Gan CS, Wang CW, Tan KS (2012) Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res 11:147–152.PubMedCrossRefGoogle Scholar
  120. 120.
    Jia L, Fang H, Wang W et al (2015) Circulating miR-145 is associated with plasma high-sensitivity c-reactive protein in acute ischemic stroke patients. Cell Biochem Funct 33:314–319PubMedCrossRefGoogle Scholar
  121. 121.
    Maitrias P, Meuth ML, Massy ZA et al (2015) MicroRNA deregulation in symptomatic carotid plaque. J Vasc Surg 62:144–145CrossRefGoogle Scholar
  122. 122.
    Tsai PC, Liao YC, Wang YS et al (2013) Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res 50:346-354PubMedCrossRefGoogle Scholar
  123. 123.
    Harraz MM, Eacker SM, Wang X et al (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 109:18962–18967PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yang ZB, Li TB, Zhang Z et al (2016) The diagnostic value of circulating brain-specific microRNAs for ischemic stroke. Intern Med 55:1279–1286PubMedCrossRefGoogle Scholar
  125. 125.
    Tiedt S, Prestel M, Malik R et al (2017) RNA-seq identifies circulating miR-125a-5p, miR-125b-5p and miR-143-3p as potential biomarkers for acute Ischemic stroke. Circ Res 121:970–980PubMedCrossRefGoogle Scholar
  126. 126.
    Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wei N, Xiao L, Xue R et al (2016) MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol 53:6809–6817PubMedCrossRefGoogle Scholar
  128. 128.
    Eken SM, Osterholm C, Chernogubova E et al (2013) Array-based profiling reveals biomarker and therapeutic potential for different microRNAs in patients with symptomatic carotid stenosis. Eur Heart J 34:394–394CrossRefGoogle Scholar
  129. 129.
    Zeng L, Liu J, Wang Y et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci 3:1265–1272Google Scholar
  130. 130.
    Zeng L, Liu J, Wang Y et al (2013) Cocktail blood biomarkers: prediction of clinical outcomes in patients with acute ischemic stroke. Eur Neurol 69:68–75PubMedCrossRefGoogle Scholar
  131. 131.
    Ibrahimverbaas CA, Fornage M, Bis JC et al (2014) Predicting stroke through genetic risk functions: the CHARGE risk score project. Stroke 45:403–412CrossRefGoogle Scholar
  132. 132.
    Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:331–339CrossRefGoogle Scholar
  133. 133.
    Wang, X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15:345–357PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wang, X (2014) The antiapoptotic effects of melatonin in neonatal hypoxic-ischemic brain injury and adult ischemic stroke. JSM Neurosurgery and Spine 2, 1033Google Scholar
  135. 135.
    Ouyang YB, Giffard RG (2014) MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int 77:2–8PubMedCrossRefGoogle Scholar
  136. 136.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci 102:13944–13949PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Musumeci M, Coppola V, Addario A et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30:4231–4242PubMedCrossRefGoogle Scholar
  138. 138.
    Yang Q, Yang K, Li A (2014) MicroRNA-21 protects against ischemia-reperfusion and hypoxia- reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/ Akt-dependent mechanism. Mol Med Rep 9:2213–2220PubMedCrossRefGoogle Scholar
  139. 139.
    Kole AJ, Swahari V, Hammond SM et al (2011) MiR29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25:125–130PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zhang Y, Wang X, Baranov SV et al (2011) Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery 69:942–956PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Picascia A, Grimaldi V, Iannone C et al (2015) Innate and adaptive immune response in stroke: focus on epigenetic regulation. J Neuroimmunol 289:111–120PubMedCrossRefGoogle Scholar
  142. 142.
    Lee H, Han S, Chang SK et al (2016) Biogenesis and regulation of the let-7, miRNAs and their functional implications. Protein Cell 7:100–113PubMedCrossRefGoogle Scholar
  143. 143.
    Shamsuzzama, Kumar L, Haque R et al (2016) Role of microRNA Let-7 in modulating multifactorial aspect of neurodegenerative diseases: an overview. Mol Neurobiol 53:2787–2793PubMedCrossRefGoogle Scholar
  144. 144.
    Hamzei Taj S, Kho W, Aswendt M et al (2016) Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia. J Neuroimmune Pharmacol 11:733–748PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Zeng Y, Liu JX, Yan ZP et al (2015) Potential microRNA biomarkers for acute ischemic stroke. Int J Mol Med 36:1639–1647PubMedCrossRefGoogle Scholar
  146. 146.
    Cordes KR, Sheehy NT, White MP et al (2009) MiR-145 and miR-143 regulate smooth muscle cell fate decisions. Nature 460:705–710Google Scholar
  147. 147.
    Dharap A, Bowen K, Place R et al (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Lai TW, Shu Z, Yu TW (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188PubMedCrossRefGoogle Scholar
  149. 149.
    Koh JY, Sang WS, Gwag BJ et al (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016PubMedCrossRefGoogle Scholar
  150. 150.
    Majdi A, Mahmoudi J, Sadigh-Eteghad S et al (2016) The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine. Neurol Sci 37:1765–1771PubMedCrossRefGoogle Scholar
  151. 151.
    Wang Y, Zhang Y, Huang J et al (2014) Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients. BMC Neurol.  https://doi.org/10.1186/1471-2377-14-77
  152. 152.
    Min W, Li S, Zhang H et al (2012) Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity. Mol Brain 5:13.  https://doi.org/10.1186/1756-6606-5-13 CrossRefGoogle Scholar
  153. 153.
    Liu Z, Chen X, Gao Y et al (2014) Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci Rep.  https://doi.org/10.1038/srep09490
  154. 154.
    Yang ZB, Zhang Z, Li TB et al (2014) Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci 127:679–689PubMedCrossRefGoogle Scholar
  155. 155.
    Buller B, Chopp M, Ueno Y et al (2012) Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation. Glia 60:1906–1914PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Packer AN, Xing Y, Harper SQ et al (2009) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28:14341–14346CrossRefGoogle Scholar
  157. 157.
    Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kelly TJ, Souza AL, Clish CB et al (2011) A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1 alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 31:2696–2706PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Zeng L, He X, Wang Y et al (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21:37–43PubMedCrossRefGoogle Scholar
  160. 160.
    Lou YL, Guo F, Liu F et al (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370:45–51PubMedCrossRefGoogle Scholar
  161. 161.
    Malik R, Bevan S, Nalls MA et al (2014) Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies. Stroke 45:394–402PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Malik R, Traylor M, Pulit SL et al (2016) Low-frequency and common genetic variation in ischemic stroke: the metastroke collaboration. Neurology 86:1217–1226PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Clinical Laboratory, Dongfeng HospitalHubei University of MedicineShiyanChina
  3. 3.Department of Newborn Medicine Brigham and Women’s HospitalBostonUSA
  4. 4.Department of Neurosurgery, Boston Children’s Hospital, F.M. Kirby Neurobiology Center for Life ScienceHarvard Medical SchoolBostonUSA
  5. 5.Experimental Center, Dongfeng HospitalHubei University of MedicineShiyanChina
  6. 6.Department of Neurology, Dongfeng HospitalHubei University of MedicineShiyanChina

Personalised recommendations