Fluoxetine Modulates the Activity of Hypothalamic POMC Neurons via mTOR Signaling

  • Ilaria Barone
  • Riccardo Melani
  • Marco Mainardi
  • Gaia Scabia
  • Manuela Scali
  • Alessia Dattilo
  • Giovanni Ceccarini
  • Paolo Vitti
  • Ferruccio Santini
  • Lamberto Maffei
  • Tommaso Pizzorusso
  • Margherita Maffei


Hypothalamic proopiomelanocortin (POMC) neurons are important players in the regulation of energy homeostasis; we previously demonstrated that environmental stimulation excites arcuate nucleus circuits to undergo plastic remodeling, leading to altered ratio between excitatory and inhibitory synaptic contacts on these neurons. The widely used selective serotonin reuptake inhibitor fluoxetine (FLX) is known to affect body weight. On the other hand, FLX administration mimics the effects of environmental stimulation on synaptic plasticity in the hippocampus and cortex. The mammalian target of rapamycin (mTOR) pathway is instrumental in these phenomena. Thus, we aimed at investigating whether and how FLX affects POMC neurons activity and hypothalamic mTOR function. Adult mice expressing green fluorescent protein (GFP) under the POMC promoter were treated with FLX for 3 weeks resulting in diminished body weight. Patch clamp recordings performed on POMC neurons indicate that FLX increases their firing rate and the excitatory AMPA-mediated transmission, and reduces the inhibitory GABAergic currents at presynaptic level. Immunofluorescence studies indicate that FLX increases the ratio between excitatory and inhibitory synaptic contacts on POMC neurons. These changes are associated with an increased activity of the hypothalamic mTOR pathway. Use of the mTOR inhibitor rapamycin blunts the effects of FLX on body weight and on functional and structural plasticity of POMC neurons. Our findings indicate that FLX is able to remodel POMC neurons, and that this may be partly mediated by the mTOR signaling pathway.


Fluoxetine Hypothalamus POMC neurons Patch clamp Plasticity mTOR pathway 



We want to thank Jeffrey Friedman for the kind gift of B6.Cg-Tg (Pomc-MAPT/Topaz)1Rck/J mice and Astra Zeneca for providing recombinant mouse leptin. We gratefully thank Dr. Nicola Origlia (CNR Institute of Neuroscience, Pisa) for the essential support in the execution of patch clamp experiments.


This study was funded by Telethon TDMM00707TU to MM, Italian Ministry of Education (2015 TC3Y9B) to MM.

Compliance with Ethical Standards

Animal care protocols and procedures were approved by the Italian Ministry of Health (108/2015-PR), and all experiments were performed in accordance with relevant guidelines and regulation.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1052_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1078 kb)


  1. 1.
    Timper K, Bruning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10(6):679–689. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F et al (2015) Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat 9:40. PubMedPubMedCentralGoogle Scholar
  3. 3.
    Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB et al (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23(4):775–786CrossRefPubMedGoogle Scholar
  4. 4.
    Jobst EE, Enriori PJ, Cowley MA (2004) The electrophysiology of feeding circuits. Trends Endocrinol Metab 15(10):488–499. CrossRefPubMedGoogle Scholar
  5. 5.
    Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578. CrossRefPubMedGoogle Scholar
  6. 6.
    Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5(9):1066–1070. CrossRefPubMedGoogle Scholar
  7. 7.
    Zemel MB, Shi H (2000) Pro-opiomelanocortin (POMC) deficiency and peripheral melanocortins in obesity. Nutr Rev 58(6):177–180CrossRefPubMedGoogle Scholar
  8. 8.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19(2):155–157. CrossRefPubMedGoogle Scholar
  9. 9.
    Krude H, Gruters A (2000) Implications of proopiomelanocortin (POMC) mutations in humans: the POMC deficiency syndrome. Trends Endocrinol Metab 11(1):15–22CrossRefPubMedGoogle Scholar
  10. 10.
    Koch M, Varela L, Kim JG, Kim JD, Hernandez-Nuno F, Simonds SE, Castorena CM, Vianna CR et al (2015) Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519(7541):45–50. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qiu J, Xue C, Bosch MA, Murphy JG, Fan W, Ronnekleiv OK, Kelly MJ (2007) Serotonin 5-hydroxytryptamine2C receptor signaling in hypothalamic proopiomelanocortin neurons: role in energy homeostasis in females. Mol Pharmacol 72(4):885–896. CrossRefPubMedGoogle Scholar
  12. 12.
    Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O'Rahilly S, Heisler LK (2008) Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149(3):1323–1328. CrossRefPubMedGoogle Scholar
  13. 13.
    Halford JC, Boyland EJ, Lawton CL, Blundell JE, Harrold JA (2011) Serotonergic anti-obesity agents: past experience and future prospects. Drugs 71(17):2247–2255. CrossRefPubMedGoogle Scholar
  14. 14.
    Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297(5581):609–611. CrossRefPubMedGoogle Scholar
  15. 15.
    Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304(5667):110–115. CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Y, Atasoy D, Su HH, Sternson SM (2011) Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146(6):992–1003. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J et al (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107(33):14875–14880. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ma X, Zubcevic L, Bruning JC, Ashcroft FM, Burdakov D (2007) Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. The Journal of neuroscience : the official journal of the Society for Neuroscience 27(7):1529–1533. CrossRefGoogle Scholar
  19. 19.
    Rosenzweig MR, Krech D, Bennett EL, Zolman JF (1962) Variation in environmental complexity and brain measures. Journal of comparative and physiological psychology 55:1092–1095CrossRefPubMedGoogle Scholar
  20. 20.
    Mainardi M, Scabia G, Vottari T, Santini F, Pinchera A, Maffei L, Pizzorusso T, Maffei M (2010) A sensitive period for environmental regulation of eating behavior and leptin sensitivity. Proc Natl Acad Sci U S A 107(38):16673–16678. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7(9):697–709. CrossRefPubMedGoogle Scholar
  22. 22.
    Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, Castren E, Maffei L (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320(5874):385–388. CrossRefPubMedGoogle Scholar
  23. 23.
    Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, Antila H, Popova D et al (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334(6063):1731–1734. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu XL, Luo L, Mu RH, Liu BB, Geng D, Liu Q, Yi LT (2015) Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice. Sci Rep 5:16024. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 17(8):546–557. CrossRefGoogle Scholar
  26. 26.
    Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153. CrossRefPubMedGoogle Scholar
  27. 27.
    Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930. CrossRefPubMedGoogle Scholar
  28. 28.
    Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC, Ikenoue T, Kwiatkowski D et al (2009) Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 9(4):362–374. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Smith MA, Katsouri L, Irvine EE, Hankir MK, Pedroni SM, Voshol PJ, Gordon MW, Choudhury AI et al (2015) Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice. Cell Rep 11(3):335–343. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Darga LL, Carroll-Michals L, Botsford SJ, Lucas CP (1991) Fluoxetine’s effect on weight loss in obese subjects. Am J Clin Nutr 54(2):321–325CrossRefPubMedGoogle Scholar
  31. 31.
    Scabia G, Barone I, Mainardi M, Ceccarini G, Scali M, Buzzigoli E, Dattilo A, Vitti P et al (2018) The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Sci Rep 8(1):1781. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Biever A, Puighermanal E, Nishi A, David A, Panciatici C, Longueville S, Xirodimas D, Gangarossa G et al (2015) PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 35(10):4113–4130. CrossRefGoogle Scholar
  34. 34.
    Rossi FM (2016) Analysis of fluoxetine-induced plasticity mechanisms as a strategy for understanding plasticity related neural disorders. Neural Regen Res 11(4):547–548. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McAvoy K, Russo C, Kim S, Rankin G, Sahay A (2015) Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age. Hippocampus 25(11):1429–1446. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mendez-David I, Boursier C, Domergue V, Colle R, Falissard B, Corruble E, Gardier AM, Guilloux JP et al (2017) Differential peripheral proteomic biosignature of fluoxetine response in a mouse model of anxiety/depression. Front Cell Neurosci 11:237. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809. CrossRefPubMedGoogle Scholar
  38. 38.
    Sharma RK, Singh T, Mishra A, Goel RK (2017) Relative safety of different antidepressants for treatment of depression in chronic epileptic animals associated with depression. Journal of epilepsy research 7(1):25–32. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sohn JW, Williams KW (2012) Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: Implications for diverging melanocortin pathways. Mol Neurobiol 45(2):225–233. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M et al (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 994:169–174CrossRefPubMedGoogle Scholar
  41. 41.
    Krashes MJ, Lowell BB, Garfield AS (2016) Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 19(2):206–219. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jeong JH, Lee DK, Jo YH (2017) Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Molecular metabolism 6(3):306–312. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jia Y, El-Haddad M, Gendy A, Nguyen T, Ross MG (2010) Serotonin-induced region-specific responses of the arcuate and ventromedial hypothalamic nuclei. The International journal of neuroscience 120(5):386–395. CrossRefPubMedGoogle Scholar
  44. 44.
    Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51(2):239–249. CrossRefPubMedGoogle Scholar
  45. 45.
    Gautron L, Elmquist JK, Williams KW (2015) Neural control of energy balance: translating circuits to therapies. Cell 161(1):133–145. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Villanueva EC, Munzberg H, Cota D, Leshan RL, Kopp K, Ishida-Takahashi R, Jones JC, Fingar DC et al (2009) Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 150(10):4541–4551. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75(3):425–436. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(28):7202–7208. CrossRefGoogle Scholar
  50. 50.
    Huang W, Zhao Y, Zhu X, Cai Z, Wang S, Yao S, Qi Z, Xie P (2013) Fluoxetine upregulates phosphorylated-AKT and phosphorylated-ERK1/2 proteins in neural stem cells: evidence for a crosstalk between AKT and ERK1/2 pathways. Journal of molecular neuroscience : MN 49(2):244–249. CrossRefPubMedGoogle Scholar
  51. 51.
    Shadfar S, Kim YG, Katila N, Neupane S, Ojha U, Bhurtel S, Srivastav S, Jeong GS et al (2016) Neuroprotective effects of antidepressants via upregulation of neurotrophic factors in the MPTP model of Parkinson’s disease. Mol Neurobiol 55:554–566. CrossRefPubMedGoogle Scholar
  52. 52.
    Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and molecular biology reviews : MMBR 68(2):320–344. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Current biology : CB 15(8):702–713. CrossRefPubMedGoogle Scholar
  54. 54.
    Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193. CrossRefPubMedGoogle Scholar
  55. 55.
    Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11(3):272–280CrossRefPubMedGoogle Scholar
  56. 56.
    Xu Y, Barish PA, Pan J, Ogle WO, O'Donnell JM (2012) Animal models of depression and neuroplasticity: assessing drug action in relation to behavior and neurogenesis. Methods Mol Biol 829:103–124. CrossRefPubMedGoogle Scholar
  57. 57.
    Aggarwal A, Jethani SL, Rohatgi RK, Kalra J (2016) Selective serotonin re-uptake inhibitors (SSRIs) induced weight changes: a dose and duration dependent study on albino rats. Journal of clinical and diagnostic research : JCDR 10(3):AF01–AF03. PubMedPubMedCentralGoogle Scholar
  58. 58.
    Caiati MD, Cherubini E (2013) Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats. Front Cell Neurosci 7:63. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ilaria Barone
    • 1
    • 2
  • Riccardo Melani
    • 3
  • Marco Mainardi
    • 3
    • 4
  • Gaia Scabia
    • 2
    • 5
  • Manuela Scali
    • 3
  • Alessia Dattilo
    • 2
    • 5
  • Giovanni Ceccarini
    • 2
  • Paolo Vitti
    • 2
  • Ferruccio Santini
    • 2
  • Lamberto Maffei
    • 3
  • Tommaso Pizzorusso
    • 3
    • 6
  • Margherita Maffei
    • 1
    • 2
    • 5
  1. 1.Dulbecco Telethon InstituteRomeItaly
  2. 2.Department of Clinical and Experimental MedicineObesity Center at the Endocrinology UnitPisaItaly
  3. 3.Institute of NeuroscienceNational Research CouncilPisaItaly
  4. 4.Bio@SNSScuola Normale SuperiorePisaItaly
  5. 5.Institute of Clinical PhysiologyNational Research CouncilPisaItaly
  6. 6.NEUROFARBA DepartmentUniversità di FirenzeFlorenceItaly

Personalised recommendations