MiR-34a Regulates Axonal Growth of Dorsal Root Ganglia Neurons by Targeting FOXP2 and VAT1 in Postnatal and Adult Mouse

  • Longfei Jia
  • Michael Chopp
  • Lei Wang
  • Xuerong Lu
  • Yi Zhang
  • Alexandra Szalad
  • Zheng Gang Zhang


Hyperglycemia impairs nerve fibers of dorsal root ganglia (DRG) neurons, leading to diabetic peripheral neuropathy (DPN). However, the molecular mechanisms underlying DPN are not fully understood. Using a mouse model of type II diabetes (db/db mouse), we found that microRNA-34a (miR-34a) was over-expressed in DRG, sciatic nerve, and foot pad tissues of db/db mice. In vitro, high glucose significantly upregulated miR-34a in postnatal and adult DRG neurons, which was associated with inhibition of axonal growth. Overexpression and attenuation of miR-34a in postnatal and adult DRG neurons suppressed and promoted, respectively, axonal growth. Bioinformatic analysis suggested that miR-34a putatively targets forkhead box protein P2 (FOXP2) and vesicle amine transport 1 (VAT1), which were decreased in diabetic tissues and in cultured DRG neurons under high glucose conditions. Dual-luciferase assay showed that miR-34a downregulated FOXP2 and VAT1 expression by targeting their 3′ UTR. Gain-of- and loss-of-function analysis showed an inverse relation between augmentation of miR-34a and reduction of FOXP2 and VAT1 proteins in postnatal and adult DRG neurons. Knockdown of FOXP2 and VAT1 reduced axonal growth. Together, these findings suggest that miR-34a and its target genes of FOXP2 and VAT1 are involved in DRG neuron damage under hyperglycemia.


miR-34a Axon growth Neuron Peripheral neuropathy 



This work was supported by NINDS grants R01 NS075084 (LW) and RO1 NS075156 (ZGZ) and NIDDK RO1 DK097519 (LW). We thank Dr. Paul Fernyhough and colleagues in his laboratory to train us how to culture adult DRG neurons.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1047_Fig7_ESM.gif (17 kb)
Fig. s1

Physiological parameters of db/m and db/db mice at age of 20 weeks. a: Mouse body weight, blood glucose levels, and HbA1c levels of db/m and db/db mice. b-e: Neurological function measured by MCV (b), SCV (c), Von Frey test (d), tail flick test (e). f-g: Representative images (f) and their quantitative data (g) show intraepidermal nerve fiber (red) densities in plantar skin. These data show that db/db mice at age of 20 weeks exhibit diabetic peripheral neuropathy. n = 6 mice/group. * P < 0.05 vs db/m mice. (GIF 16 kb).

12035_2018_1047_MOESM1_ESM.tif (496 kb)
High Resolution Image (TIFF 495 kb).
12035_2018_1047_Fig8_ESM.gif (137 kb)
Fig. s2

Comparison between SMI31 and TUJ1 staining. a: Representative microscopic images show the colocalization of SMI31 and TUJ1 staining of postnatal DRG neurons. Scale bar = 100 μm. (GIF 137 kb).

12035_2018_1047_MOESM2_ESM.tif (2.3 mb)
High Resolution Image (TIFF 2380 kb).
12035_2018_1047_Fig9_ESM.gif (39 kb)
Fig. s3

Bioinformatic analysis of putative miR-34a target genes. a-d: Based on IPA and Targetscan analysis, putative miR-34a target genes were grouped to 4 pathways associated to nervous system, including development of neurons (a), neuritogenesis (b), branching of neuritis (c), and growth of neuritis (d). Genes with red color in each pathway were selected for Western blot analysis. (GIF 38 kb).

12035_2018_1047_MOESM3_ESM.tif (516 kb)
High Resolution Image (TIFF 515 kb).
12035_2018_1047_Fig10_ESM.gif (66 kb)
Fig. s4

Levels of proteins in diabetic mouse tissues. a-c: Representative Western blot show protein levels of ADAM10, DCX, c-MET, NOTCH1, ROCK1, SYNJ1, and VAMP2 in DRG (a), sciatic nerve (SN, b) and foot pad (FP, c) tissues of db/db or db/m mice. Three individual mice were presented for each mouse group. β-actin bands in a-c of each group were shown in Fig. 3a, respectively. d-j: Quantitative data show levels of ADAM10 (d), DCX (e), c-MET (f), NOTCH1 (g), ROCK1 (h), SYNJ1 (i), and VAMP2 (j) in DRG, SN and FP. n = 6 mice/group. * P < 0.05 vs db/m mice. (GIF 65 kb).

12035_2018_1047_MOESM4_ESM.tif (575 kb)
High Resolution Image (TIFF 575 kb).


  1. 1.
    Feldman EL, Nave KA, Jensen TS, Bennett DL (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93(6):1296–1313. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zenker J, Ziegler D, Chrast R (2013) Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 36(8):439–449. CrossRefPubMedGoogle Scholar
  3. 3.
    Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7(10):573–583. CrossRefPubMedGoogle Scholar
  4. 4.
    Wang B, Bao L (2017) Axonal microRNAs: localization, function and regulatory mechanism during axon development. J Mol Cell Biol 9(2):82–90. PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kantharidis P, Wang B, Carew RM, Lan HY (2011) Diabetes complications: the microRNA perspective. Diabetes 60(7):1832–1837. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gong Q, Lu Z, Huang Q, Ruan L, Chen J, Liang Y, Wang H, Yue Y et al (2015) Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 456(2):615–620. CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang X, Gong X, Han S, Zhang Y (2014) MiR-29b protects dorsal root ganglia neurons from diabetic rat. Cell Biochem Biophys 70(2):1105–1111. CrossRefPubMedGoogle Scholar
  8. 8.
    Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H (2013) miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain : J Neurol 136(Pt 9):2738–2750. CrossRefGoogle Scholar
  9. 9.
    Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, Yu B, Gu X et al (2015) MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 586:43–49. CrossRefPubMedGoogle Scholar
  10. 10.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199. CrossRefPubMedGoogle Scholar
  11. 11.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69. CrossRefPubMedGoogle Scholar
  12. 12.
    Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW et al (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 108(52):21099–21104. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, Peng S, Preuss TM et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462(7270):213–217. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Linial M, Miller K, Scheller RH (1989) VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles. Neuron 2(3):1265–1273CrossRefPubMedGoogle Scholar
  17. 17.
    Wang L, Chopp M, Szalad A, Liu Z, Lu M, Zhang L, Zhang J, Zhang RL et al (2012) Thymosin beta4 promotes the recovery of peripheral neuropathy in type II diabetic mice. Neurobiol Dis 48(3):546–555. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J et al (1996) Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495CrossRefPubMedGoogle Scholar
  19. 19.
    Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19(4):849–861CrossRefPubMedGoogle Scholar
  20. 20.
    Hur EM, Yang IH, Kim DH, Byun J, Saijilafu XWL, Nicovich PR, Cheong R, Levchenko A et al (2011) Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc Natl Acad Sci U S A 108(12):5057–5062. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL (1999) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 6(5):347–363. CrossRefPubMedGoogle Scholar
  23. 23.
    Jia L, Wang L, Chopp M, Zhang Y, Szalad A, Zhang ZG (2016) MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions. Neuroscience 329:43–53. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, Liu XS, Jia L et al (2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163. CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci : Off J Soc Neurosci 33(16):6885–6894. CrossRefGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Y, Chopp M, Liu XS, Kassis H, Wang X, Li C, An G, Zhang ZG (2015) MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth. Dev Neurobiol 75(12):1402–1419. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Saijilafu HEM, Liu CM, Jiao Z, Xu WL, Zhou FQ (2013) PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1. Nat Commun 4:2690. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lupachyk S, Watcho P, Shevalye H, Vareniuk I, Obrosov A, Obrosova IG, Yorek MA (2013) Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats. Am J Phys Endocrinol Metab 305(3):E396–E404. CrossRefGoogle Scholar
  30. 30.
    Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, Kassis H, Zhang RL et al (2016) MicroRNA-146a promotes oligodendrogenesis in stroke. Mol Neurobiol 54:227–237. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798CrossRefPubMedGoogle Scholar
  32. 32.
    Xu XH, Deng CY, Liu Y, He M, Peng J, Wang T, Yuan L, Zheng ZS et al (2014) MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 24(5):576–594. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jia L, Wang L, Chopp M, Li C, Zhang Y, Szalad A, Zhang ZG (2017) MiR-29c/PRKCI regulates axonal growth of dorsal root ganglia neurons under hyperglycemia. Mol Neurobiol 55:851–858. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58(5):900–911. CrossRefPubMedGoogle Scholar
  35. 35.
    Ciccacci C, Morganti R, Di Fusco D, D'Amato C, Cacciotti L, Greco C, Rufini S, Novelli G et al (2014) Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 51(4):663–671. CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng C, Kobayashi M, Martinez JA, Ng H, Moser JJ, Wang X, Singh V, Fritzler MJ et al (2015) Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy. J Neuropathol Exp Neurol 74(8):804–817. CrossRefPubMedGoogle Scholar
  37. 37.
    Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC, Bhasin MK, Raimo M et al (2014) MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 15(6):762–774. CrossRefPubMedGoogle Scholar
  38. 38.
    Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, Oliver PL et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22):2337–2345. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S, Gaub S, Baum MG, French CA, Nicod J, Coventry JA, Enard W, Fray M, Brown SD, Nolan PM, Paabo S, Channon KM, Costa RM, Eilers J, Ehret G, Rawlins JN, Fisher SE (2008) Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol : CB 18 (5):354–362. doi:
  40. 40.
    Horng S, Kreiman G, Ellsworth C, Page D, Blank M, Millen K, Sur M (2009) Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. J Neurosci : Off J Soc Neurosci 29(43):13672–13683. CrossRefGoogle Scholar
  41. 41.
    Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C et al (2011) Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 7(7):e1002145. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Spaeth JM, Hunter CS, Bonatakis L, Guo M, French CA, Slack I, Hara M, Fisher SE et al (2015) The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia 58(8):1836–1844. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ma Z, Guo W, Guo X, Wang X, Kang L (2011) Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc Natl Acad Sci U S A 108(10):3882–3887. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Krueger SR, Kolar A, Fitzsimonds RM (2003) The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40(5):945–957CrossRefPubMedGoogle Scholar
  45. 45.
    Riviere JB, Ramalingam S, Lavastre V, Shekarabi M, Holbert S, Lafontaine J, Srour M, Merner N et al (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89(2):219–230. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hayess K, Kraft R, Sachsinger J, Janke J, Beckmann G, Rohde K, Jandrig B, Benndorf R (1998) Mammalian protein homologous to VAT-1 of Torpedo californica: isolation from Ehrlich ascites tumor cells, biochemical characterization, and organization of its gene. J Cell Biochem 69(3):304–315CrossRefPubMedGoogle Scholar
  47. 47.
    Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR Jr (2004) Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53(2):463–473CrossRefPubMedGoogle Scholar
  48. 48.
    Calcutt NA, Tomlinson DR, Biswas S (1990) Coexistence of nerve conduction deficit with increased Na(+)-K(+)-ATPase activity in galactose-fed mice. Implications for polyol pathway and diabetic neuropathy. Diabetes 39(6):663–666CrossRefPubMedGoogle Scholar
  49. 49.
    Peltier A, Goutman SA, Callaghan BC (2014) Painful diabetic neuropathy. BMJ 348:g1799. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyHenry Ford HospitalDetroitUSA
  2. 2.Department of Neurolgoy, Xuanwu HospitalCapital Medical UniversityBeijingChina
  3. 3.Department of Physics Oakland UniversityRochesterUSA

Personalised recommendations